3 resultados para Tirosina
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Le ammine biogene sono composti azotati a basso peso molecolare che vengono prodotti in seguito alla decarbossilazione degli aminoacidi da parte di specifici enzimi microbici della famiglia delle decarbossilasi. Questi composti sono presenti in diversi alimenti e, in particolare, in quelli fermentati. Nonostante la capacità dell’organismo di metabolizzare tali molecole tramite appositi sistemi di detossificazione una loro eccessiva assunzione provoca sintomatologie deleterie per la salute umana. La tiramina, in particolare, è una delle ammine biogene attualmente più studiate in ragione della diffusa presenza dell’enzima tirosina decarbossilasi (tyrDC) nel pool enzimatico di diversi batteri lattici, specialmente quelli appartenenti al genere Enterococcus. Seppure in letteratura vi siano numerosi studi riguardanti il rapporto fra contenuto di tiramina e l’attività degli enterococchi in molti alimenti, ad oggi sono ridotte le informazioni inerenti la regolazione e il ruolo fisiologico di tale molecola per la cellula microbica. Alla luce di tali considerazioni questa tesi mi sono occupata di approfondire le conoscenze relative l’attività dell’enzima tyrDC in un terreno di coltura a composizione nota da parte dei due ceppi di Enterococcus faecalis EF37 e ATCC29212. A tal fine i ceppi sono stati inoculati in cinque diversi terreni e incubati a tre diverse temperature (20°C, 30°C e 40°C), dopo averli pre-coltivati in terreni contenenti o meno tirosina, allo scopo di valutare se la fase di pre-adattamento fosse in grado di influenzare le performance dei ceppi considerati. Dai risultati ottenuti è emerso che è presente un’estrema eterogeneità nell’attività dell’enzima tyrDC anche all’interno della medesima specie, infatti se il ceppo EF37 ha performance migliori in termini di decarbossilazione quando pre-adattato, il ceppo ATCC29212 non sembra essere influenzato da questo fattore, seppur entrambi presentino una crescita cellulare più accentuata quando pre-adattati. È stata inoltre confermata, alle condizioni adattate, la capacità di produrre 2-feniletilamina da parte del solo ceppo EF37.
Resumo:
Le ammine biogene sono il prodotto della decarbossilazione degli amminoacidi da parte di enzimi microbici. Tra essi vi è la tirosina decarbossilasi, caratterizzata dalla possibilità di utilizzare, in assenza di tirosina, la fenilalanina, ottenendo la 2-feniletilamina. In particolare, la tiramina è responsabile della comparsa di importanti sintomi tossicologici, raggruppati con il termine “cheese reaction”. In questa sperimentazione sono stati presi in considerazione 2 ceppi di Enterococcus mundtii (C46 e C53) coltivati in BHI in presenza o assenza di tirosina per caratterizzarne l’attività decarbossilasica. Sono state monitorate la crescita microbica, mediante densità ottica e la produzione di tiramina e 2-feniletilamina mediante tecnica HPLC. Dai risultati ottenuti è emerso che entrambi i ceppi producono tiramina sia in presenza che in assenza del precursore. La concentrazione massima rilevata per il ceppo C46 è stata di 797 mg/l e 767 mg/l per C53. È inoltre emerso che essi possono decarbossilare la fenilalanina, ma solo dopo 8 e 24 ore di incubazione per il ceppo C46 e C53. Per quanto concerne la crescita, entrambi i ceppi hanno raggiunto il massimo valore di densità ottica dopo 6-8 ore a 37°C, con una durata della fase lag ridotta, seguita da un rapido aumento della densità ottica. Non sono state riscontrate differenze significative in termini di massima densità ottica raggiunta (A) e durata della fase lag (λ) tra i due ceppi, mentre C53 ha presentato valori inferiori per quanto riguarda la velocità incremento della densità ottica in fase esponenziale (µmax). Dagli studi genici è emerso che l’organizzazione dell’operone dei ceppi considerati corrisponde con quella filogeneticamente riconosciuta per il genere Enterococcus, ma nonostante la similarità, l’operone manca del gene codificante per l’antiporto Na+/H+. È stata inoltre evidenziata nel genoma dei ceppi considerati un’altra regione che contiene geni codificanti per un ulteriore sistema decarbossilasico.
Resumo:
Lo studio riportato in questa tesi ha come scopo l’osservazione e la comprensione dei processi molecolari associati alla deposizione di CaCO3 nei polimorfi di calcite e aragonite nel mollusco gasteropode Haliotis rufescens. In particolare l’attenzione si è focalizzata sullo strato glicoproteico (green layer) che si trova inserito all’interno dell’ipostraco o strato madreperlaceo. Studi precedenti suggeriscono l’ipotesi che il green layer sia una struttura polifunzionale che svolge un ruolo attivo nell’induzione di crescita dei cristalli di carbonato di calcio nella conchiglia. All’analisi microscopica il green layer si presenta come un foglietto trilaminato. Sugli strati esterni è depositata aragonite nella forma prismatica da una parte e sferulitica dall’altra. All’interno è racchiuso un core proteico, formato da glicoproteine e ricco di chitina. Questa struttura tripartita conferisce al guscio calcareo nuove proprietà meccaniche, come la resistenza alle fratture molto maggiore rispetto al minerale naturale. Il green layer è stato trattato in ambiente alcalino, l’unico in grado di solubilizzarlo. È stato ottenuto del materiale proteico che è stato caratterizzato utilizzando SDS-PAGE, colorato con Blu Comassie e all’argento per visualizzarne la componente peptidica. Il green layer è fluorescente, sono state quindi eseguite analisi spettroscopiche sull’estratto peptidico per determinarne le proprietà chimo fisiche (dipendenza dal pH dell’intensità di fluorescenza). Sono stati eseguiti esperimenti di crescita dei cristalli di CaCO3 in ambiente saturo di CaCl2 in assenza e presenza del peptide e in assenza e presenza di Mg++. I cristalli sono stati osservati al microscopio elettronico a scansione (SEM) e al microscopio confocale. Da un punto di vista spettroscopico si osserva che, eccitando l’estratto alcalino del green layer a 280 nm e 295 nm, lunghezze d’onda caratteristiche degli aminoacidi aromatici, si ottiene uno spettro di emissione che presenta una forte banda centrata a 440 nm e una spalla a circa 350 nm, quest’ultima da ascrivere all’emissione tipica di aminoacidi aromatici. L’emissione di fluorescenza dell’estratto dal green layer dipende dal pH per tutte le bande di emissione; tale effetto è particolarmente visibile per lo spettro di emissione a 440 nm, la cui lunghezza d’onda di emissione e l’intensità dipendono dalla ionizzazione di aminoacidi acidi (pKa = 4) e dell’istidina (pKa = 6.5 L’emissione a 440 nm proviene invece da un’eccitazione il cui massimo di eccitazione è centrato a 350 nm, tipica di una struttura policiclica aromatica. Poiché nessun colorante estrinseco viene isolato dalla matrice del green layer a seguito dei vari trattamenti, tale emissione potrebbe derivare da una modificazione posttraduzionale di aminoacidi le cui proprietà spettrali suggeriscono la formazione di un prodotto di dimerizzazione della tirosina: la ditirosina. Questa struttura potrebbe essere la causa del cross-link che rende resistente il green layer alla degradazione da parte di agenti chimici ed enzimatici. La formazione di ditirosina come fenomeno post-traduzionale è stato recentemente acquisito come un fenomeno di origine perossidativa attraverso la formazione di un radicale Tyr ed è stato osservato anche in altri organismi caratterizzati da esoscheletro di tipo chitinoso, come gli insetti del genere Manduca sexta. Gli esperimenti di cristallizzazione in presenza di estratto di green layer ne hanno provato l’influenza sulla nucleazione dei cristalli. In presenza di CaCl2 avviene la precipitazione di CaCO3 nella fase calcitica, ma la conformazione romboedrica tipica della calcite viene modificata dalla presenza del peptide. Inoltre aumenta la densità dei cristalli che si aggregano a formare strutture sferiche di cristalli incastrati tra loro. Aumentando la concentrazione di peptide, le sfere a loro volta si uniscono tra loro a formare strutture geometriche sovrapposte. In presenza di Mg++, la deposizione di CaCO3 avviene in forma aragonitica. Anche in questo caso la morfologia e la densità dei cristalli dipendono dalla concentrazione dello ione e dalla presenza del peptide. È interessante osservare che, in tutti i casi nei quali si sono ottenute strutture cristalline in presenza dell’estratto alcalino del green layer, i cristalli sono fluorescenti, a significare che il peptide è incluso nella struttura cristallina e ne induce la modificazione strutturale come discusso in precedenza. Si osserva inoltre che le proprietà spettroscopiche del peptide in cristallo ed in soluzione sono molto diverse. In cristallo non si ha assorbimento alla più corta delle lunghezze d’onda disponibili in microscopia confocale (405 nm) bensì a 488 nm, con emissione estesa addirittura sino al rosso. Questa è un’indicazione, anche se preliminare, del fatto che la sua struttura in soluzione e in cristallo è diversa da quella in soluzione. In soluzione, per un peptide il cui peso molecolare è stimato tra 3500D (cut-off della membrana da dialisi) e 6500 D, la struttura è, presumibilmente, totalmente random-coil. In cristallo, attraverso l’interazione con gli ioni Ca++, Mg++ e CO3 -- la sua conformazione può cambiare portando, per esempio, ad una sovrapposizione delle strutture aromatiche, in modo da formare sistemi coniugati non covalenti (ring stacking) in grado di assorbire ed emettere luce ad energia più bassa (red shift).