3 resultados para Time resolved emission spectra
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.
Resumo:
Gels are materials that are easier to recognize than to define. For all practical purpose, a material is termed a gel if the whole volume of liquid is completely immobilized as usually tested by the ‘tube inversion’ method. Recently, supramolecular gels obtained from low molecular weight gelators (LMWGs) have attracted considerable attention in materials science since they represent a new class of smart materials sensitive to external stimuli, such as temperature, ultrasounds, light, chemical species and so on. Accordingly, during the past years a large variety of potentialities and applications of these soft materials in optoelectronics, as electronic devices, light harvesting systems and sensors, in bio-materials and in drug delivery have been reported. Spontaneous self-assembly of low molecular weight molecules is a powerful tool that allows complex supramolecular nanoscale structures to be built. The weak and non-covalent interactions such as hydrogen bonding, π–π stacking, coordination, electrostatic and van der Waals interactions are usually considered as the most important features for promoting sol-gel equilibria. However, the occurrence of gelation processes is ruled by further “external” factors, among which the temperature and the nature of the solvents that are employed are of crucial importance. For example, some gelators prefer aromatic or halogenated solvents and in some cases both the gelation temperature and the type of the solvent affect the morphologies of the final aggregation. Functionalized cyclopentadienones are fascinating systems largely employed as building blocks for the synthesis of polyphenylene derivatives. In addition, it is worth noting that structures containing π-extended conjugated chromophores with enhanced absorption properties are of current interest in the field of materials science since they can be used as “organic metals”, as semiconductors, and as emissive or absorbing layers for OLEDs or photovoltaics. The possibility to decorate the framework of such structures prompted us to study the synthesis of new hydroxy propargyl arylcyclopentadienone derivatives. Considering the ability of such systems to give π–π stacking interactions, the introduction on a polyaromatic structure of polar substituents able to generate hydrogen bonding could open the possibility to form gels, although any gelation properties has been never observed for these extensively studied systems. we have synthesized a new class of 3,4-bis (4-(3-hydroxy- propynyl) phenyl) -2, 5-diphenylcyclopentadienone derivatives, one of which (1a) proved to be, for the first time, a powerful organogelator. The experimental results indicated that the hydroxydimethylalkynyl substituents are fundamental to guarantee the gelation properties of the tetraarylcyclopentadienone unit. Combining the results of FT-IR, 1H NMR, UV-vis and fluorescence emission spectra, we believe that H-bonding and π–π interactions are the driving forces played for the gel formation. The importance of soft materials lies on their ability to respond to external stimuli, that can be also of chemical nature. In particular, high attention has been recently devoted to anion responsive properties of gels. Therefore the behaviour of organogels of 1a in toluene, ACN and MeNO2 towards the addition of 1 equivalent of various tetrabutylammonium salts were investigated. The rheological properties of gels in toluene, ACN and MeNO2 with and without the addition of Bu4N+X- salts were measured. In addition a qualitative analysis on cation recognition was performed. Finally the nature of the cyclic core of the gelator was changed in order to verify how the carbonyl group was essential to gel solvents. Until now, 4,5-diarylimidazoles have been synthesized.
Antarctic cloud spectral emission from ground-based measurements, a focus on far infrared signatures
Resumo:
The present work belongs to the PRANA project, the first extensive field campaign of observation of atmospheric emission spectra covering the Far InfraRed spectral region, for more than two years. The principal deployed instrument is REFIR-PAD, a Fourier transform spectrometer used by us to study Antarctic cloud properties. A dataset covering the whole 2013 has been analyzed and, firstly, a selection of good quality spectra is performed, using, as thresholds, radiance values in few chosen spectral regions. These spectra are described in a synthetic way averaging radiances in selected intervals, converting them into BTs and finally considering the differences between each pair of them. A supervised feature selection algorithm is implemented with the purpose to select the features really informative about the presence, the phase and the type of cloud. Hence, training and test sets are collected, by means of Lidar quick-looks. The supervised classification step of the overall monthly datasets is performed using a SVM. On the base of this classification and with the help of Lidar observations, 29 non-precipitating ice cloud case studies are selected. A single spectrum, or at most an average over two or three spectra, is processed by means of the retrieval algorithm RT-RET, exploiting some main IR window channels, in order to extract cloud properties. Retrieved effective radii and optical depths are analyzed, to compare them with literature studies and to evaluate possible seasonal trends. Finally, retrieval output atmospheric profiles are used as inputs for simulations, assuming two different crystal habits, with the aim to examine our ability to reproduce radiances in the FIR. Substantial mis-estimations are found for FIR micro-windows: a high variability is observed in the spectral pattern of simulation deviations from measured spectra and an effort to link these deviations to cloud parameters has been performed.