2 resultados para Time equivalent approach
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.
Resumo:
Robotic Grasping is an important research topic in robotics since for robots to attain more general-purpose utility, grasping is a necessary skill, but very challenging to master. In general the robots may use their perception abilities like an image from a camera to identify grasps for a given object usually unknown. A grasp describes how a robotic end-effector need to be positioned to securely grab an object and successfully lift it without lost it, at the moment state of the arts solutions are still far behind humans. In the last 5–10 years, deep learning methods take the scene to overcome classical problem like the arduous and time-consuming approach to form a task-specific algorithm analytically. In this thesis are present the progress and the approaches in the robotic grasping field and the potential of the deep learning methods in robotic grasping. Based on that, an implementation of a Convolutional Neural Network (CNN) as a starting point for generation of a grasp pose from camera view has been implemented inside a ROS environment. The developed technologies have been integrated into a pick-and-place application for a Panda robot from Franka Emika. The application includes various features related to object detection and selection. Additionally, the features have been kept as generic as possible to allow for easy replacement or removal if needed, without losing time for improvement or new testing.