3 resultados para Time and space
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The spatio-temporal variations in diversity and abundance of deep-sea macrofaunal assemblages (excluding meiofaunal taxa, as Nematoda, Copepoda and Ostracoda) from the Blanes Canyon (BC) and adjacent open slope are described. The Catalan Sea basin is characterized by the presence of numerous submarine canyons, which are globally acknowledged as biodiversity hot-spots, due to their disturbance regime and incremented conveying of organic matter. This area is subjected to local deep-sea fisheries activities, and to recurrent cold water cascading events from the shelf. The upper canyon (~900 m), middle slope (~1200 m) and lower slope (~1500 m) habitats were investigated during three different months (October 2008, May 2009 and September 2009). A total of 624 specimens belonging to 16 different taxa were found into 67 analyzed samples, which had been collected from the two study areas. Of these, Polychaeta, Mollusca and Crustacea were always the most abundant groups. As expected, the patterns of species diversity and evenness were different in time and space. Both in BC and open slope, taxa diversity and abundance are higher in the shallowest depth and lowest at -1500 m depth. This is probably due to different trophic regimes at these depths. The abundance of filter-feeders is higher inside BC than in the adjacent open slope, which is also related with an increment of predator polychaetes. Surface deposit-feeders are more abundant in the open slope than in BC, along with a decrement of filter-feeders and their predators. Probably these differences are due to higher quantities of suspended organic matter reaching the canyon. The multivariate analyses conducted on major taxa point out major differences effective taxa richness between depths and stations. In September 2009 the analyzed communities double their abundances, with a corresponding increase in richness of taxa. This could be related to a mobilizing event, like the release of accumulated food-supply in a nepheloid layer associated to the arrival of autumn. The highest abundance in BC is detected in the shallowest depth and in late summer (September), probably due to higher food availability caused by stronger flood events coming from Tordera River. The effects of such events seemed to involve adjacent open slope too. The nMDS conducted on major taxa abundance shows a slight temporal difference between the three campaigns samples, with a clear clustering between samples of Sept 09. All depth and all months were dominated by Polychaeta, which have been identified to family level and submitted to further analysis. Family richness have clearly minimum at the -1200 m depth of BC, highlighting the presence of a general impact affecting the populations in the middle slope. Three different matrices have been created, each with a different taxonomic level (All Taxa “AT”, Phylum Level “PL” and Polychaeta Families “PF”). Multivariate analysis (MDS, SIMPER) conducted on PL matrix showed a clear spatial differences between stations (BC and open slope) and depths. MDSs conducted on other two matrices (AT and PF) showed similar patterns, but different from PL analysis. A 2 nd stage analysis have been conducted to understand differences between different taxonomic levels, and PL level has been chosen as the most representative of variation. The faunal differences observed were explained by depth, station and season. All work has been accomplished in the Centre d’estudis avançats de Blanes (CEAB-CSIC), within the framework of Spanish PROMETEO project "Estudio Integrado de Cañones y Taludes PROfundos del MEdiTErráneo Occidental: un hábitat esencial", Ref. CTM2007-66316-C02- 01/MAR.
Resumo:
The purpose of this thesis is, on the one hand, to illustrate the peculiarities of children’s literature, fantasy fiction and their translation and, on the other hand, to propose a translation from English to Italian of some chapters of the e-book The Explorers’ Gate by American author Chris Grabenstein. The first chapters of this work offer an analysis of different critical studies on children’s literature and fantasy fiction and illustrate the characteristics of these two literary expressions. I will also discuss the different approaches to their translation in order to produce a translated text that is consistent with its literary genre and with translation theories. The third chapter is about the author and includes an interview on his idea of children’s literature and his opinions about translation. The second part of this thesis is represented by the actual translation of the e-book. Firstly, I will analyze the source text, dividing the analysis in extra-textual and intra- textual and focusing on sender, addressee, time and space, function of the text, plot, structure, narrator, style and language used by the author. I will also highlight those elements that probably would be challenging during the translation phase. Secondly, I will explain the macro-strategy that I adopted during the process of translation, which can be defined as child-oriented. In the last chapter I will highlight those passages that represented translation challenges and I will show how I tackled them.
Resumo:
Nowadays words like Smart City, Internet of Things, Environmental Awareness surround us with the growing interest of Computer Science and Engineering communities. Services supporting these paradigms are definitely based on large amounts of sensed data, which, once obtained and gathered, need to be analyzed in order to build maps, infer patterns, extract useful information. Everything is done in order to achieve a better quality of life. Traditional sensing techniques, like Wired or Wireless Sensor Network, need an intensive usage of distributed sensors to acquire real-world conditions. We propose SenSquare, a Crowdsensing approach based on smartphones and a central coordination server for time-and-space homogeneous data collecting. SenSquare relies on technologies such as CoAP lightweight protocol, Geofencing and the Military Grid Reference System.