2 resultados para Three layer integration
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work a modelization of the turbulence in the atmospheric boundary layer, under convective condition, is made. For this aim, the equations that describe the atmospheric motion are expressed through Reynolds averages and, then, they need closures. This work consists in modifying the TKE-l closure used in the BOLAM (Bologna Limited Area Model) forecast model. In particular, the single column model extracted from BOLAM is used, which is modified to obtain other three different closure schemes: a non-local term is added to the flux- gradient relations used to close the second order moments present in the evolution equation of the turbulent kinetic energy, so that the flux-gradient relations become more suitable for simulating an unstable boundary layer. Furthermore, a comparison among the results obtained from the single column model, the ones obtained from the three new schemes and the observations provided by the known case in literature ”GABLS2” is made.
Resumo:
An industrial manipulator equipped with an automatic clay extruder is used to realize a machine that can manufacture additively clay objects. The desired geometries are designed by means of a 3D modeling software and then sliced in a sequence of layers with the same thickness of the extruded clay section. The profiles of each layer are transformed in trajectories for the extruder and therefore for the end-effector of the manipulator. The goal of this thesis is to improve the algorithm for the inverse kinematic resolution and the integration of the routine within the development software that controls the machine (Rhino/Grasshopper). The kinematic model is described by homogeneous transformations, adopting the Denavit-Hartenberg standard convention. The function is implemented in C# and it has been preliminarily tested in Matlab. The outcome of this work is a substantial reduction of the computation time relative to the execution of the algorithm, which is halved.