3 resultados para Third generation therapies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Internet of Things (IoT) is a critical pillar in the digital transformation because it enables interaction with the physical world through remote sensing and actuation. Owing to the advancements in wireless technology, we now have the opportunity of using their features to the best of our abilities and improve over the current situation. Indeed, the Internet of Things market is expanding at an exponential rate, with devices such as alarms and detectors, smart metres, trackers, and wearables being used on a global scale for automotive and agriculture, environment monitoring, infrastructure surveillance and management, healthcare, energy and utilities, logistics, good tracking, and so on. The Third Generation Partnership Project (3GPP) acknowledged the importance of IoT by introducing new features to support it. In particular, in Rel.13, the 3GPP introduced the so-called IoT to support Low Power Wide Area Networks (LPWAN).As these devices will be distributed in areas where terrestrial networks are not feasible or commercially viable, satellite networks will play a complementary role due to their ability to provide global connectivity via their large footprint size and short service deployment time. In this context, the goal of this thesis is to investigate the viability of integrating IoT technology with satellite communication (SatCom) systems, with a focus on the Random Access(RA) Procedure. Indeed, the RA is the most critical procedure because it allows the UE to achieve uplink synchronisation, obtain the permanent ID, and obtain uplink transmission resources. The goal of this thesis is to evaluate preamble detection in the SatCom environment.
Resumo:
Nowadays, information security is a very important topic. In particular, wireless networks are experiencing an ongoing widespread diffusion, also thanks the increasing number of Internet Of Things devices, which generate and transmit a lot of data: protecting wireless communications is of fundamental importance, possibly through an easy but secure method. Physical Layer Security is an umbrella of techniques that leverages the characteristic of the wireless channel to generate security for the transmission. In particular, the Physical Layer based-Key generation aims at allowing two users to generate a random symmetric keys in an autonomous way, hence without the aid of a trusted third entity. Physical Layer based-Key generation relies on observations of the wireless channel, from which harvesting entropy: however, an attacker might possesses a channel simulator, for example a Ray Tracing simulator, to replicate the channel between the legitimate users, in order to guess the secret key and break the security of the communication. This thesis work is focused on the possibility to carry out a so called Ray Tracing attack: the method utilized for the assessment consist of a set of channel measurements, in different channel conditions, that are then compared with the simulated channel from the ray tracing, to compute the mutual information between the measurements and simulations. Furthermore, it is also presented the possibility of using the Ray Tracing as a tool to evaluate the impact of channel parameters (e.g. the bandwidth or the directivity of the antenna) on the Physical Layer based-Key generation. The measurements have been carried out at the Barkhausen Institut gGmbH in Dresden (GE), in the framework of the existing cooperation agreement between BI and the Dept. of Electrical, Electronics and Information Engineering "G. Marconi" (DEI) at the University of Bologna.
Resumo:
In recent years, developed countries have turned their attention to clean and renewable energy, such as wind energy and wave energy that can be converted to electrical power. Companies and academic groups worldwide are investigating several wave energy ideas today. Accordingly, this thesis studies the numerical simulation of the dynamic response of the wave energy converters (WECs) subjected to the ocean waves. This study considers a two-body point absorber (2BPA) and an oscillating surge wave energy converter (OSWEC). The first aim is to mesh the bodies of the earlier mentioned WECs to calculate their hydrostatic properties using axiMesh.m and Mesh.m functions provided by NEMOH. The second aim is to calculate the first-order hydrodynamic coefficients of the WECs using the NEMOH BEM solver and to study the ability of this method to eliminate irregular frequencies. The third is to generate a *.h5 file for 2BPA and OSWEC devices, in which all the hydrodynamic data are included. The BEMIO, a pre-and post-processing tool developed by WEC-Sim, is used in this study to create *.h5 files. The primary and final goal is to run the wave energy converter Simulator (WEC-Sim) to simulate the dynamic responses of WECs studied in this thesis and estimate their power performance at different sites located in the Mediterranean Sea and the North Sea. The hydrodynamic data obtained by the NEMOH BEM solver for the 2BPA and OSWEC devices studied in this thesis is imported to WEC-Sim using BEMIO. Lastly, the power matrices and annual energy production (AEP) of WECs are estimated for different sites located in the Sea of Sicily, Sea of Sardinia, Adriatic Sea, Tyrrhenian Sea, and the North Sea. To this end, the NEMOH and WEC-Sim are still the most practical tools to estimate the power generation of WECs numerically.