3 resultados para Thermal storage wall

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis, developed in collaboration between the team Systems and Equipment for Energy and Environment of Bologna University and Chalmers University of Technology in Goteborg, aims to study the benefits resulting from the adoption of a thermal storage system for marine application. To that purpose a chruis ship has been considered. To reach the purpose has been used the software EGO (Energy Greed Optimization) developed by University of Bologna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The representation of the thermal behaviour of the building is achieved through a relatively simple dynamic model that takes into account the effects due to the thermal mass of the building components. The model of a intra-floor apartment has been built in the Matlab-Simulink environment and considers the heat transmission through the external envelope, wall and windows, the internal thermal masses, (i.e. furniture, internal wall and floor slabs) and the sun gain due to opaque and see-through surfaces of the external envelope. The simulations results for the entire year have been compared and the model validated, with the one obtained with the dynamic building simulation software Energyplus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.