5 resultados para Thermal behavior in building

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The representation of the thermal behaviour of the building is achieved through a relatively simple dynamic model that takes into account the effects due to the thermal mass of the building components. The model of a intra-floor apartment has been built in the Matlab-Simulink environment and considers the heat transmission through the external envelope, wall and windows, the internal thermal masses, (i.e. furniture, internal wall and floor slabs) and the sun gain due to opaque and see-through surfaces of the external envelope. The simulations results for the entire year have been compared and the model validated, with the one obtained with the dynamic building simulation software Energyplus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ITA]La demenza consiste nel deterioramento, spesso progressivo, dello stato cognitivo di un individuo. Chi è affetto da demenza, presenta alterazioni a livello cognitivo, comportamentale e motorio, ad esempio compiendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei pazienti affetti da demenza è valutata clinicamente tramite apposite scale e le informazioni relative al comportamento vengono raccolte intervistando chi se ne occupa, come familiari, il personale infermieristico o il medico curante. Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente influenzate da considerazioni soggettive, e sono dispendiose in termini di tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per valutare il comportamento motorio dei pazienti e le sue alterazioni patologiche; i sensori inerziali indossabili potrebbero costituire una valida soluzione, per questo scopo. L'obiettivo principale della presente attività di tesi è stato definire e implementare un software per una valutazione oggettiva, basata su sensori, del pattern motorio circadiano, in pazienti affetti da demenza ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare differenze nei sintomi della malattia che interessano il comportamento motorio, come descritto in ambito clinico. Lo scopo secondario è stato quello di verificare i cambiamenti motori pre- e post-intervento in un sottogruppo di pazienti, a seguito della somministrazione di un programma sperimentale di intervento basato su esercizi fisici. --------------- [ENG]Dementia involves deterioration, often progressive, of a person's cognitive status. Those who suffer from dementia, present alterations in cognitive and motor behavior, for example performing obsessive and repetitive gestures, without a purpose. The condition of patients suffering from dementia is clinically assessed by means of specific scales and information relating to the behavior are collected by interviewing caregivers, such as the family, nurses, or the doctor. Often it turns out that these are inaccurate assessments that may be heavily influenced by subjective evaluations and are costly in terms of time. Therefore, there is the need for objective methods to assess the patients' motor behavior and the pathological changes; wearable inertial sensors may represent a viable option, so this aim. The main objective of this thesis project was to define and implement a software for a sensor-based assessment of the circadian motor pattern in patients suffering from dementia, hospitalized in a long-term care unit, which could highlight differences in the disease symptoms affecting the motor behavior, as described in the clinical setting. The secondary objective was to verify pre- and post-intervention changes in the motor patterns of a subgroup of patients, following the administration of an experimental program of intervention based on physical exercises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.