3 resultados para The generalized Prony spectrum
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.
Resumo:
The investigations of the large-scale structure of our Universe provide us with extremely powerful tools to shed light on some of the open issues of the currently accepted Standard Cosmological Model. Until recently, constraining the cosmological parameters from cosmic voids was almost infeasible, because the amount of data in void catalogues was not enough to ensure statistically relevant samples. The increasingly wide and deep fields in present and upcoming surveys have made the cosmic voids become promising probes, despite the fact that we are not yet provided with a unique and generally accepted definition for them. In this Thesis we address the two-point statistics of cosmic voids, in the very first attempt to model its features with cosmological purposes. To this end, we implement an improved version of the void power spectrum presented by Chan et al. (2014). We have been able to build up an exceptionally robust method to tackle with the void clustering statistics, by proposing a functional form that is entirely based on first principles. We extract our data from a suite of high-resolution N-body simulations both in the LCDM and alternative modified gravity scenarios. To accurately compare the data to the theory, we calibrate the model by accounting for a free parameter in the void radius that enters the theory of void exclusion. We then constrain the cosmological parameters by means of a Bayesian analysis. As far as the modified gravity effects are limited, our model is a reliable method to constrain the main LCDM parameters. By contrast, it cannot be used to model the void clustering in the presence of stronger modification of gravity. In future works, we will further develop our analysis on the void clustering statistics, by testing our model on large and high-resolution simulations and on real data, also addressing the void clustering in the halo distribution. Finally, we also plan to combine these constraints with those of other cosmological probes.
Resumo:
In this thesis, we explore constraints which can be put on the primordial power spectrum of curvature perturbations beyond the scales probed by anisotropies of the cosmic microwave background and galaxy surveys. We exploit present and future measurements of CMB spectral distortions, and their synergy with CMB anisotropies, as well existing and future upper limits on the stochastic background of gravitational waves. We derive for the first time phenomenological templates that fit small-scale bumps in the primordial power spectrum generated in multi-field models of inflation. By using such templates, we study for the first time imprints of primordial peaks on anisotropies and spectral distortions of the cosmic microwave background and we investigate their contribution to the stochastic background of gravitational waves. Through a Monte Carlo Markov Chain analysis we infer for the first time the constraints on the amplitude, the width and the location of such bumps using Planck and FIRAS data. We also forecast how a future spectrometer like PIXIE could improve FIRAS boundaries. The results derived in this thesis have implications for the possibility of primordial black holes from inflation.