1 resultado para Tertiary, Assessment, Statistics, Learning, Mathematics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- JISC Information Environment Repository (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (32)
- Aquatic Commons (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Brock University, Canada (27)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CentAUR: Central Archive University of Reading - UK (62)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (54)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (12)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (6)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (4)
- Institute of Public Health in Ireland, Ireland (7)
- Instituto Politécnico de Santarém (3)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (43)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Ministerio de Cultura, Spain (18)
- National Center for Biotechnology Information - NCBI (1)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (3)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (5)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (14)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (4)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (13)
- Universidade do Minho (7)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (52)
- Université de Montréal (1)
- Université de Montréal, Canada (15)
- University of Canberra Research Repository - Australia (3)
- University of Connecticut - USA (3)
- University of Michigan (53)
- University of Queensland eSpace - Australia (59)
- University of Southampton, United Kingdom (8)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
As a consequence of the diffusion of next generation sequencing techniques, metagenomics databases have become one of the most promising repositories of information about features and behavior of microorganisms. One of the subjects that can be studied from those data are bacteria populations. Next generation sequencing techniques allow to study the bacteria population within an environment by sampling genetic material directly from it, without the needing of culturing a similar population in vitro and observing its behavior. As a drawback, it is quite complex to extract information from those data and usually there is more than one way to do that; AMR is no exception. In this study we will discuss how the quantified AMR, which regards the genotype of the bacteria, can be related to the bacteria phenotype and its actual level of resistance against the specific substance. In order to have a quantitative information about bacteria genotype, we will evaluate the resistome from the read libraries, aligning them against CARD database. With those data, we will test various machine learning algorithms for predicting the bacteria phenotype. The samples that we exploit should resemble those that could be obtained from a natural context, but are actually produced by a read libraries simulation tool. In this way we are able to design the populations with bacteria of known genotype, so that we can relay on a secure ground truth for training and testing our algorithms.