58 resultados para Teoria de Boussinesq, Rosal e Caquot
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Riconoscere un gesto, tracciarlo ed identificarlo è una operazione complessa ed articolata. Negli ultimi anni, con l’avvento massivo di interfacce interattive sempre più sofisticate, si sono ampliati gli approcci nell’interazione tra uomo e macchina. L’obiettivo comune, è quello di avere una comunicazione “trasparente” tra l’utente e il computer, il quale, deve interpretare gesti umani tramite algoritmi matematici. Il riconoscimento di gesti è un modo per iniziare a comprendere il linguaggio del corpo umano da parte della macchina. Questa disciplina, studia nuovi modi di interazione tra questi due elementi e si compone di due macro obiettivi : (a) tracciare i movimenti di un particolare arto; (b) riconoscere tale tracciato come un gesto identificativo. Ognuno di questi due punti, racchiude in sé moltissimi ambiti di ricerca perché moltissimi sono gli approcci proposti negli anni. Non si tratta di semplice cattura dell’immagine, è necessario creare un supporto, a volte molto articolato, nel quale i dati grezzi provenienti dalla fotocamera, necessitano di filtraggi avanzati e trattamenti algoritmici, in modo tale da trasformare informazioni grezze, in dati utilizzabili ed affidabili. La tecnologia riguardo la gesture recognition è rilevante come l’introduzione delle interfacce tattili sui telefoni intelligenti. L’industria oggi ha iniziato a produrre dispositivi in grado di offrire una nuova esperienza, la più naturale possibile, agli utenti. Dal videogioco, all’esperienza televisiva gestita con dei piccoli gesti, all’ambito biomedicale, si sta introducendo una nuova generazione di dispositivi i cui impieghi sono innumerevoli e, per ogni ambito applicativo, è necessario studiare al meglio le peculiarità, in modo tale da produrre un qualcosa di nuovo ed efficace. Questo lavoro di tesi ha l’obiettivo di apportare un contributo a questa disciplina. Ad oggi, moltissime applicazioni e dispositivi associati, si pongono l’obiettivo di catturare movimenti ampi: il gesto viene eseguito con la maggior parte del corpo e occupa una posizione spaziale rilevante. Questa tesi vuole proporre invece un approccio, nel quale i movimenti da seguire e riconoscere sono fatti “nel piccolo”. Si avrà a che fare con gesti classificati fini, dove i movimenti delle mani sono compiuti davanti al corpo, nella zona del torace, ad esempio. Gli ambiti applicativi sono molti, in questo lavoro si è scelto ed adottato l’ambito artigianale.