2 resultados para Television and video
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Skype is one of the well-known applications that has guided the evolution of real-time video streaming and has become one of the most used software in everyday life. It provides VoIP audio/video calls as well as messaging chat and file transfer. Many versions are available covering all the principal operating systems like Windows, Macintosh and Linux but also mobile systems. Voice quality decreed Skype success since its birth in 2003 and peer-to-peer architecture has allowed worldwide diffusion. After video call introduction in 2006 Skype became a complete solution to communicate between two or more people. As a primarily video conferencing application, Skype assumes certain characteristics of the delivered video to optimize its perceived quality. However in the last years, and with the recent release of SkypeKit1, many new Skype video-enabled devices came out especially in the mobile world. This forced a change to the traditional recording, streaming and receiving settings allowing for a wide range of network and content dynamics. Video calls are not anymore based on static ‘chatting’ but mobile devices have opened new possibilities and can be used in several scenarios. For instance, lecture streaming or one-to-one mobile video conferences exhibit more dynamics as both caller and callee might be on move. Most of these cases are different from “head&shoulder” only content. Therefore, Skype needs to optimize its video streaming engine to cover more video types. Heterogeneous connections require different behaviors and solutions and Skype must face with this variety to maintain a certain quality independently from connection used. Part of the present work will be focused on analyzing Skype behavior depending on video content. Since Skype protocol is proprietary most of the studies so far have tried to characterize its traffic and to reverse engineer its protocol. However, questions related to the behavior of Skype, especially on quality as perceived by users, remain unanswered. We will study Skype video codecs capabilities and video quality assessment. Another motivation of our work is the design of a mechanism that estimates the perceived cost of network conditions on Skype video delivery. To this extent we will try to assess in an objective way the impact of network impairments on the perceived quality of a Skype video call. Traditional video streaming schemes lack the necessary flexibility and adaptivity that Skype tries to achieve at the edge of a network. Our contribution will lye on a testbed and consequent objective video quality analysis that we will carry out on input videos. We will stream raw video files with Skype via an impaired channel and then we will record it at the receiver side to analyze with objective quality of experience metrics.
Resumo:
The Venice Lagoon is a complex, heterogeneous and highly dynamic system, subject to anthropogenic and natural pressures that deeply affect the functioning of this ecosystem. Thanks to the development of acoustic technologies, it is possible to obtain maps with a high resolution that describe the characteristics of the seabed. With this aim, a high resolution Multibeam Echosounder (MBES) bathymetry and backscatter survey was carried out in 2021 within the project Research Programme Venezia 2021. Ground-truthing samples were collected in 24 sampling sites to characterize the seafloor and validate the maps produced with the MBES acoustic data. Ground-truthing included the collection of sediment samples for particle size analysis and video footage of the seabed to describe the biological component. The backscatter data was analysed using the unsupervised Jenks classification. We created a map of the habitats integrating morphological, granulometric and biological data in a GIS environment. The results obtained in this study were compared to those collected in 2015 as part of the National Flagship Project RITMARE. Through the comparison of the repeated morpho-bathymetric surveys over time we highlighted the changes of the seafloor geomorphology, sediment, and habitat distribution. We observed different type of habitats and the presence of areas characterized by erosive processes and others in which deposition occurred. These effects led to changes in the benthic communities and in the type of sediment. The combination of the MBES surveys, the ground truth data and the GIS methodology, permitted to construct high-resolution maps of the seafloor and proved to be effective implement for monitoring an extremely dynamic area. This work can contribute not only to broaden the knowledge of transitional environments, but also to their monitor and protection.