8 resultados para Telescopi ottici, radiotelescopi, telescopi X
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Per telescopio intendiamo qualsiasi strumento finalizzato alla misura della radiazione proveniente dallo spazio. Tipicamente questo nome viene riservato agli strumenti ottici; tuttavia è utile utilizzare un singolo nome per caratterizzare tutta la classe di strumenti per le osservazioni astronomiche. Un telescopio è uno strumento capace di raccogliere radiazione da una grande superficie, concentrandola in un punto. La luce viene in genere raccolta da uno specchio o antenna, quindi elaborata da vari strumenti, come per esempio un filtro o uno spettrografo, e infine indirizzata ad un rivelatore, che può essere l'occhio umano, una lastra fotografica, un CCD, un rivelatore radio, una camera a scintille etc.
Resumo:
La rituale ciclicità del cielo ed il mistero degli eventi che in esso accadono hanno portato tutte le popolazioni della Terra ad osservarlo e studiarlo fin dai tempi più remoti. È solo con l'avvento del telescopio però, che si viene a conoscenza di una gran moltitudine di oggetti celesti. I primi strumenti ottici in uso erano telescopi rifrattori. Questi presentavano un problema: l’aberrazione cromatica, che oggi sappiamo può essere parzialmente risolta utilizzando obiettivi a doppietto o tripletto acromatico. All’epoca per ovviare il problema, Newton, decise di utilizzare un sistema di specchi curvi e nel 1668 costruì il primo telescopio riflettore. L’era dei grandi telescopi riflettori iniziò nel 18° secolo. Uno dei più grandi telescopi costruiti all’epoca aveva una superficie ottica di circa 122 cm di diametro. Nel creare telescopi di dimensioni maggiori, ci si imbatte in vari problemi. La soluzione adottata nella costruzione di grandi telescopi fino agli anni '80, fu quella di costruire un imponente blocco monolitico come specchio primario. Questo portò alla costruzione di enormi e pesanti telescopi che si dovevano muovere con alta precisione. Spinti al limite delle capacità progettuali e costruttive dell'epoca, nacque un nuovo concetto costruttivo dei telescopi. Si passò da uno strumento passivo ad un sistema attivo, in cui la qualità dell'ottica era ottenuta da un controllo elettronico di strutture deformabili. Con l’ottica attiva fu possibile costruire telescopi di dimensioni sempre maggiori. Tuttavia ci si imbatte in un ulteriore problema: la qualità dell’immagine è degradata dalla turbolenza atmosferica. In questo trattato mi propongo di descrivere una recente tecnica di correzione per rimuovere le distorsioni del fronte d'onda causate dalla turbolenza: l’ottica adattiva.
Resumo:
La maggior parte dei corpi celesti che popolano l’universo emette “luce”. Ciò significa che essi sono visibili dai nostri occhi quando li alziamo sul cielo notturno o al limite, se troppo lontani, da potenti telescopi ottici. Questa luminosità ha nella maggior parte dei casi un’origine termonucleare, dovuta cioè alla presenza di sorgenti come le stelle, in cui l’elevata temperatura interna legata alle reazioni di fusione che le mantengono in vita produce una radiazione di corpo nero in banda ottica. Tuttavia, dato che la parte visibile costituisce solo una minuscola porzione dell’intero spettro elettromagnetico, andando ad indagare emissioni a differenti frequenze come il radio, l’infrarosso, l’ultravioletto, X e gamma, si rileva la presenza un’altra categoria di oggetti dalle caratteristiche peculiari che li rendono un affascinante campo di studio per molteplici ragioni: i Nuclei Galattici Attivi (AGN) (figura 1). Sono abbastanza rari (costituiscono meno dell’1% del totale rispetto alle normali galassie) e dalla vita breve, spesso molto lontani e potenti, ferventi di un’intensa attività che sembra crescere col redshift; si ipotizza perciò che siano giovani e che ci aprano una finestra sul momento successivo al collasso iniziale proprio della vita di ogni galassia, rivelandosi fondamentali per elaborare eventuali teorie cosmologiche. Inoltre, sebbene spesso ospiti di galassie visibili anche in ottico, i loro meccanismi di emissione e gli speciali comportamenti necessitano di analisi e spiegazioni totalmente differenti. Particolare è anche il metodo di rilevamento: per coprire infatti queste determinate frequenze è stata sviluppata una tecnica innovativa capace di dare ottimi risultati, perfino migliori di quelli dei telescopi tradizionali, l’interferometria radio. La tesi si divide in due parti: la prima delinea un ritratto degli AGN, la seconda analizza il flusso proveniente dalla radiogalassia 3C 84 a 15.4 e 43 GHz e ipotizza un possibile sito di origine dell’aumento di brillanza osservato.
Resumo:
L'oggetto di studio di questa tesi e' l'analisi degli ammassi di galassie (galaxy clusters) e delle loro proprieta', attraverso un introduttiva analisi morfologica e dinamica, considerazioni sulle proprieta' termiche (con caratteristiche collegate direttamente dalla temperatura), ed infine l'ispezione dei meccanismi che generano le emissioni non termiche e le loro sorgenti. Cercheremo delle relazioni fra le une e le altre. In particolare studieremo specifiche conformazioni del mezzo intergalattico (ICM, intracluster medium) all'interno degli ammassi, quali Aloni, Relitti e Mini Aloni, attraverso le radiazioni che essi sprigionano nella banda dei raggi X e onde radio. Le prime osservazioni sugli ammassi di galassie sono state effettuate gia' alla fine del '700 da Charles Messier, che, al fine di esaminare il cielo alla ricerca di comete, forni un catalogo di 110 oggetti cosmici che, pur apparendo nebulosi per via della limitatezza di risoluzione dei telescopi di allora, non erano sicuramente comete. Fra questi oggetti vi erano anche ammassi di galassie. I primi studi approfonditi si ebbero soltanto con il rapido incremento tecnologico del XX secolo che permise di capire che quelle formazioni confuse altro non erano che agglomerati di galassie. Telescopi piu' grandi, e poi interferometri, radiotelescopi osservazioni agli X hanno sostanzialmente aperto il mondo dell'astrofisica. In particolare Abell stabili' nel primo dopoguerra il primo catalogo di ammassi su determinazione morfologica. Altri astronomi ampliarono poi i parametri di classificazione basandosi su caratteristiche ottiche e meccaniche. Le analisi piu' recenti infine basano le loro conclusioni sullo studio delle bande non ottiche dello spettro, principalmente i raggi X e onde Radio.
Resumo:
Nel documento in questione vi è una breve storia della nascita ed evoluzione dei telescopi, per finire alla descrizione tecnica di base del funzionamento di un sistema ottico adattivo.
Resumo:
La presenza di materia oscura nell'universo venne ipotizzata negli anni '30 a seguito di alcune anomalie nei risultati sperimentali ottenuti in astrofisica e cosmologia. La distribuzione di materia ottenuta non concordava infatti con i dati provenienti dalle osservazioni astronomiche e gli scienziati ipotizzarono l'esistenza di un tipo di materia, denominata appunto materia oscura, che interagisse debolmente con la radiazione elettromagnetica e fosse quindi interamente invisibile ai telescopi, sia che fossero a radiofrequenze che operanti nel campo del visibile o con raggi gamma e X, ma che producesse effetti gravitazionali. Nel corso degli anni si sono aggiunte ulteriori evidenze a sostegno dell'esistenza di materia oscura, provenienti anche dallo studio della cosmologia, e numerosi esperimenti (tra cui XENON, IGEX, DAMA/LIBRA) sono stati condotti per cercare di determinare tipo e massa delle particelle o la loro abbondanza (PLANCK). Il lavoro di questa tesi consiste in uno studio delle interazioni dei neutroni con lo xenon per l'esperimento XENON1T. I neutroni costituiscono un fondo particolarmente pericoloso per l'esperimento, in quanto producono uno scattering direttamente sul nucleo allo stesso modo delle particelle di materia oscura. Nel lavoro svolto sono state dapprima analizzate le caratteristiche delle singole interazioni con lo xenon contenuto nella camera, per poi passare ad uno studio più specifico sul comportamento dei neutroni prodotti dai fotomoltiplicatori del rivelatore. In seguito alle analisi svolte è stato possibile caratterizzare il fondo di neutroni in modo più preciso, permettendo di determinare alcuni criteri di selezione per il loro riconoscimento.
Resumo:
Lo spazio fra le stelle nelle galassie non è vuoto, ma è composto da gas rarefatto, particelle di polvere, un campo magnetico, elettroni, protoni e altri nuclei atomici relativistici; spesso questi elementi possono essere considerati come un’unica entità di- namica: il mezzo interstellare o più semplicemente ISM. Nel primo capitolo vedremo come il mezzo si distribuisce generalmente all’interno delle galassie a spirale, in fasce di temperatura sempre minore man mano che ci si allontana dal centro (HIM, WIM, WNM, CNM). La conoscenza della distribuzione del mezzo è utile per poter comprendere maggiormente i processi di emissione e le varie zone in cui questi avvengono in una tipica galassia a spirale, che è lo scopo di questa tesi. L’ISM infatti entra in gioco in quasi tutti i processi emissivi, in tutte le bande di emis- sione dello spettro elettromagnetico che andremo ad analizzare. Il nostro modo di vedere le galassie dell’universo è molto cambiato infatti nel corso dell’ultimo secolo: l’utilizzo di nuovi telescopi ci ha permesso di andare ad osservare le galassie anche in bande dello spettro diverse da quella visibile, in modo da raccogliere informazioni impossibili da ottenere con la sola banda ottica. Nel secondo capitolo andremo ad analizzare cinque bande di emissione (banda X, ot- tica, radio, gamma e infrarossa) e vedremo come appaiono tipicamente le galassie a spirale a lunghezze d’onda differenti, quali sono i processi in gioco e come il mezzo interstellare sia fondamentale in quasi ogni tipo di processo. A temperature elevate, esso è responsabile dell’emissione X della galassia, mentre re- gioni più fredde, formate da idrogeno ionizzato, sono responsabili delle righe di emis- sione presenti nello spettro ottico. Il campo magnetico, tramite le sue interazioni con elettroni relativistici è la principale fonte dell’emissione radio nel continuo di una galas- sia a spirale, mentre quella in riga è dovuta a idrogeno atomico o a gas freddo. Vedremo infine come raggi cosmici e polvere, che fanno sempre parte del mezzo inter- stellare, siano rispettivamente la causa principale dell’emissione gamma e infrarossa.
Resumo:
Recenti sviluppi nella progettazione di impianti di luce di sincrotrone di quarta generazione riguardano la produzione di fasci di luce nella banda dei raggi X con elevate caratteristiche in termini di brillanza, coerenza e impulsi estremamente brevi ( femtosecondo ) . I principali schemi per la produzione della radiazione XFEL riguardano l’impiego di ondulatori con differenti modalità di seeding. L’utilizzo dei fasci di radiazione XFEL nelle linee di luce per applicazioni di imaging, spettroscopia e diffrazione, ha determinato un costante sforzo sia nello sviluppo di dispositivi ottici in grado di selezionare e focalizzare il fascio su dimensioni nanometriche, che nella sperimentazione di tecniche “lensless” in grado di superare i limiti imposti dall’utilizzo di tali dispositivi . I risultati ottenuti nella produzione dei fasci hanno consentito nuove possibilità di indagine nella struttura dei materiali su distanze atomiche nella definizione, senza precedenti di dettagli su scale temporali del femtosecondo, permettendo lo studio, non solo di strutture atomiche in condizioni di equilibrio stabile quanto di stati della materia velocemente dinamici e di non equilibrio. CXDI e Spettroscopia Strutturale Ultraveloce risolte in tempo sono alcune delle tecniche in cui l’utilizzo della radiazione XFEL apre nuove possibilità di indagine agli stati transienti della materia permettendo la ricostruzione della dinamica di processi chimico –fisici su intervalli temporali finora inaccessibili .