3 resultados para Tacit knowledge transfer

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Natural Language Processing (NLP) has seen tremendous improvements over the last few years. Transformer architectures achieved impressive results in almost any NLP task, such as Text Classification, Machine Translation, and Language Generation. As time went by, transformers continued to improve thanks to larger corpora and bigger networks, reaching hundreds of billions of parameters. Training and deploying such large models has become prohibitively expensive, such that only big high tech companies can afford to train those models. Therefore, a lot of research has been dedicated to reducing a model’s size. In this thesis, we investigate the effects of Vocabulary Transfer and Knowledge Distillation for compressing large Language Models. The goal is to combine these two methodologies to further compress models without significant loss of performance. In particular, we designed different combination strategies and conducted a series of experiments on different vertical domains (medical, legal, news) and downstream tasks (Text Classification and Named Entity Recognition). Four different methods involving Vocabulary Transfer (VIPI) with and without a Masked Language Modelling (MLM) step and with and without Knowledge Distillation are compared against a baseline that assigns random vectors to new elements of the vocabulary. Results indicate that VIPI effectively transfers information of the original vocabulary and that MLM is beneficial. It is also noted that both vocabulary transfer and knowledge distillation are orthogonal to one another and may be applied jointly. The application of knowledge distillation first before subsequently applying vocabulary transfer is recommended. Finally, model performance due to vocabulary transfer does not always show a consistent trend as the vocabulary size is reduced. Hence, the choice of vocabulary size should be empirically selected by evaluation on the downstream task similar to hyperparameter tuning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sales prediction plays a huge role in modern business strategies. One of it's many use cases revolves around estimating the effects of promotions. While promotions generally have a positive effect on sales of the promoted product, they can also have a negative effect on those of other products. This phenomenon is calles sales cannibalisation. Sales cannibalisation can pose a big problem to sales forcasting algorithms. A lot of times, these algorithms focus on sales over time of a single product in a single store (a couple). This research focusses on using knowledge of a product across multiple different stores. To achieve this, we applied transfer learning on a neural model developed by Kantar Consulting to demo an approach to estimating the effect of cannibalisation. Our results show a performance increase of between 10 and 14 percent. This is a very good and desired result, and Kantar will use the approach when integrating this test method into their actual systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unmanned Aerial Vehicle (UAVs) equipped with cameras have been fast deployed to a wide range of applications, such as smart cities, agriculture or search and rescue applications. Even though UAV datasets exist, the amount of open and quality UAV datasets is limited. So far, we want to overcome this lack of high quality annotation data by developing a simulation framework for a parametric generation of synthetic data. The framework accepts input via a serializable format. The input specifies which environment preset is used, the objects to be placed in the environment along with their position and orientation as well as additional information such as object color and size. The result is an environment that is able to produce UAV typical data: RGB image from the UAVs camera, altitude, roll, pitch and yawn of the UAV. Beyond the image generation process, we improve the resulting image data photorealism by using Synthetic-To-Real transfer learning methods. Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a different - although related - problem. This approach has been widely researched in other affine fields and results demonstrate it to be an interesing area to investigate. Since simulated images are easy to create and synthetic-to-real translation has shown good quality results, we are able to generate pseudo-realistic images. Furthermore, object labels are inherently given, so we are capable of extending the already existing UAV datasets with realistic quality images and high resolution meta-data. During the development of this thesis we have been able to produce a result of 68.4% on UAVid. This can be considered a new state-of-art result on this dataset.