4 resultados para TRIPLET EMITTER

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'energia solare rientra nel gruppo delle energie rinnovabili, ovvero che provengono da una fonte il cui utilizzo attuale non ne pregiudica la disponibilità nel futuro. L'energia solare ha molti vantaggi, poiché è inesauribile ed è una risorsa d'immediata disponibilità perché giunge attraverso i raggi del sole. La conversione fotovoltaica sfrutta il meccanismo di generazione di carica elettrica prodotto dall'interazione della radiazione luminosa su di un materiale semiconduttore. La necessità di creare energia riducendo al minimo l'impatto ambientale ed il contemporaneo aumento del prezzo di fonti fossili come ad esempio il petrolio ed il carbone (senza trascurare il fatto che le riserve di essi sono, di fatto, esauribili) ha portato un aumento considerevole della produzione di energia elettrica tramite conversione fotovoltaica. Allo stato attuale dell'economia e dei mercati, sebbene il settore fotovoltaico sia in forte crescita, non è esente da un parametro che ne descrive le caratteristiche economiche ed energetiche, il cosiddetto rapporto costo/efficienza. Per efficienza, si intende la quantità di energia elettrica prodotta rispetto alla potenza solare incidente per irraggiamento, mentre per costo si intende quello sostenuto per la costruzione della cella. Ridurre il rapporto costo/efficienza equivale a cercare di ottenere un'efficienza maggiore mantenendo inalterati i costi, oppure raggiungere una medio-alta efficienza ma ridurre in maniera significativa la spesa di fabbricazione. Quindi, nasce la necessità di studiare e sviluppare tecnologie di celle solari all'avanguardia, che adottino accorgimenti tecnologici tali per cui, a parità di efficienza di conversione, il costo di produzione della cella sia il più basso possibile. L'efficienza dei dispositivi fotovoltaici è limitata da perdite ottiche, di ricombinazione di carica e da resistenze parassite che dipendono da diversi fattori, tra i quali, le proprietà ottiche e di trasporto di carica dei materiali, l'architettura della cella e la capacità di intrappolare la luce da parte del dispositivo. Per diminuire il costo della cella, la tecnologia fotovoltaica ha cercato di ridurre il volume di materiale utilizzato (in genere semiconduttore), dal momento in cui si ritiene che il 40% del costo di una cella solare sia rappresentato dal materiale. Il trend che questo approccio comporta è quello di spingersi sempre di più verso spessori sottili, come riportato dalla International Technology Roadmap for Photovoltaic, oppure ridurre il costo della materia prima o del processo. Tra le architetture avanzate di fabbricazione si analizzano le Passivated Emitter and Rear Cell-PERC e le Metal Wrap Through-MWT Cell, e si studia, attraverso simulazioni numeriche TCAD, come parametri geometrici e di drogaggio vadano ad influenzare le cosiddette figure di merito di una cella solare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years technologies related to photovoltaic energy have rapidly developed and the interest on renewable energy power source substantially increased. In particular, cost reduction and appropriate feed-in tariff contributed to the increase of photovoltaic installation, especially in Germany and Italy. However, for several technologies, the observed experimental efficiency of solar cells is still far from the theoretical maximum efficiency, and thus there is still room for improvement. In this framework the research and development of new materials and new solar devices is mandatory. In this thesis the morphological and optical properties of thin films of nanocrystalline silicon oxynitride (nc-SiON) have been investigated. This material has been studied in view of its application in Si based heterojunction solar cells (HIT). Actually, a-Si:H is used now in these cells as emitter layer. Amorphous SiO_x N_y has already shown excellent properties, such as: electrical conductivity, optical energy gap and transmittance higher than the ones of a-Si:H. Nc-SiO_x N_y has never been investigated up to now, but its properties can surpass the ones of amorphous SiON. The films of nc-SiON have been deposited at the University of Konstanz (Germany). The properties of these films have been studied using of atomic force microscopy and optical spectroscopy methods. This material is highly complex as it is made by different coexisting phases. The main purpose of this thesis is the development of methods for the analyses of morphological and optical properties of nc-SiON and the study of the reliability of those methods to the measurement of the characteristics of these silicon films. The collected data will be used to understand the evolution of the properties of nc-SiON, as a function of the deposition parameters. The results here obtained show that nc-SiON films have better properties with respect to both a-Si:H and a-SiON, i. e. higher optical band-gap and transmittance. In addition, the analysis of the variation of the observed properties as a function of the deposition parameters allows for the optimization of deposition conditions for obtaining optimal efficiency of a HIT cell with SiON layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades, cyclometalated Ir(III) complexes have drawn a large interest for their unique properties: they are excellent triplet state emitters, thus the emission is phosphorescent in nature; typically high quantum yields and good stability make them good candidates for luminescent materials. Moreover, through an opportune choice of the ligands, it is possible to tune the emission along the whole visible spectra. Thanks to these interesting features, Ir(III) complexes have found different applications in several areas of applied science, from OLEDs to bioimaging. In particular, regarding the second application, a remarkable red-shift in the emission is required, in order to minimize the problem of the tissue penetration and the possible damages for the organisms. With the aim of synthesizing a new family of NIR emitting Ir(III) complexes, we envisaged the possibility to use for the first time 2-(1H-tetrazol-1-yl)pyridine as bidentate ligand able to provide the required red-shift of the emission of the final complexes. Exploiting the versatility of the ligand, I prepared two different families of heteroleptic Ir(III) complexes. In detail, in the first case the 2-(1H-tetrazol-1-yl)pyridine was used as bis-chelating N^N ligand, leading to cationic complexes, while in the second case it was used as cyclometalating C^N ligand, giving neutral complexes. The structures of the prepared molecules have been characterised by NMR spectroscopy and mass spectrometry. Moreover, the neutral complexes’ emissive properties have been measured: emission spectra have been recorded in solution at both room temperature and 77K, as well as in PMMA matrix. DFT calculation has then been performed and the obtained results have been compared to experimental ones.