2 resultados para TRANSIENT SPECTROSCOPY
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the past decade, perovskites have been under the spotlight as promising semicon- ductors with unique properties. Hybrid halide perovskites show excellent characteristic properties suitable for optoelectronic applications as tunable band gap, high absorption coefficient, large mobility and long carrier recombination lifetime. However, a complete understanding of environmental instability and the nature of defects in these materials is still lacking, hindering the development of perovskite-based technologies. In this work we studied MAPbBr3 single crystals, fabricated with Inverse Temperature Crystallization (ITC) technique, with Photo-Induced Current Transient Spectroscopy (PICTS). PICTS is a transient photocurrent measurement rarely employed for studying perovskites mate- rials, that allows for the defects characterization in high resistivity materials. We studied the samples under different conditions, such as negative and positive voltage biases, bias stress, different contact geometries and different illumination wavelengths, in order to study their effect on the material physical properties and to evaluate the trap activation energies and their behavior under different working conditions.
Resumo:
Hybrid Organic-Inorganic Halide Perovskites (HOIPs) include a large class of materials described with the general formula ABX3, where A is an organic cation, B an inorganic cation and X an halide anion. HOIPs show excellent optoelectronic characteristics such as tunable band gap, high adsorption coefficient and great mobility life-time. A subclass of these materials, the so-called two- dimensional (2D) layered HOIPs, have emerged as potential alternatives to traditional 3D analogs to enhance the stability and increase performance of perovskite devices, with particular regard in the area of ionizing radiation detectors, where these materials have reached truly remarkable milestones. One of the key challenges for future development of efficient and stable 2D perovskite X-ray detector is a complete understanding of the nature of defects that lead to the formation of deep states. Deep states act as non-radiative recombination centers for charge carriers and are one of the factors that most hinder the development of efficient 2D HOIPs-based X-ray detectors. In this work, deep states in PEA2PbBr4 were studied through Photo-Induced Current Transient Spectroscopy (PICTS), a highly sensitive spectroscopic technique capable of detecting the presence of deep states in highly resistive ohmic materials, and characterizing their activation energy, capture cross section and, under stringent conditions, the concentration of these states. The evolution of deep states in PEA 2 PbBr 4 was evaluated after exposure of the material to high doses of ionizing radiation and during aging (one year). The data obtained allowed us to evaluate the contribution of ion migration in PEA2PbBr4. This work represents an important starting point for a better understanding of transport and recombination phenomena in 2D perovskites. To date, the PICTS technique applied to 2D perovskites has not yet been reported in the scientific literature.