5 resultados para TRANSFER RADICAL POLYMERIZATION
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis investigates the synthesis of polymeric ionic liquid [(poly-acryloyloxy)6C6C1im][NTf2], by free radical polymerization of acryloyl imidazolium-base ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2]. Moreover, the smartest synthetic route to obtain this monomer was investigated. Two different synthesis were compared. The first one started from the preparation of the monomer 6-chlorohexyl acrylate followed by substitution and metathesis to reach ionic liquid monomer. The second one started from synthesis of the ionic liquid [(HO)6C6C1im]Cl followed by metathesis and esterification in order to get ionic liquid monomer [(acryloyloxy)6C6C1im][NTf2].
Resumo:
Sono stati sintetizzati materiali polimerici contenenti complessi di iridio luminescenti. In particolare è stato messa a punto una via sintetica per la funzionalizzazione del gruppo terminale di catene metacriliche ottenute mediante ATRP.
Resumo:
An investigation on the synthesis and properties of ferrocene-containing methacrylate monomer and polymer was carried out. Block copolymers of Ferrocenylmethyl Methacrylate with methyl, butil and esil methacrylate, were also prepared. The side-chain ferrocene-containing polymers and copolymers were prepared via atom transfer radical polymerization (ATRP). The glass transition temperature (Tg) values of the polymers and copolymers were measured by differential scan calorimetry (DSC).The thermal degradation behavior of copolymers was also studied and compared with the respective homopolymers. Cyclic voltammetry was employed to study the electrochemical properties. Preliminar electrochemical studies with a glassy carbon and Indium Tin Oxide electrodes modified with ferrocene-polymer conducted in aqueous and organic media are reported.
Resumo:
The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.
Resumo:
The reactivty of poly(glycidyl methacrylate), obtained by RAFT controlled radical polymerization, has been investigated with a nucelophilic agent, such as morpholine, in various aprotic polar solvents in order to optimize the reaction (time and nucleophile excess). A strong interaction between polymer and solvent, gained by hydrogen bonds, during the process has proved to be essential in order to lower the reaction time and the nucelophilic agent excess. Dissimilar behaviors have been detected by GPC analysis due to the reactivity of the sulfhydryl formed during the RAFT's aminolysis. The various solvents lead to conditions in which different inter and intra-chain associations occur; the result is the formation of dimers, trimers and tetramers (to a less extent) in the first case, and cyclical structures in the second one. The reactivity of the hydroxy group, formed during the ring opening reaction, has been further investigated in order to link isothiocyanate-functionalized fluorescent marker along the polymeric chain.