2 resultados para THIN-LAYERS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il presente lavoro di tesi propone uno studio approfondito di proprietà morfologiche e di trasporto di carica di film sottili di SiOxNy amorfi (a-SiOxNy) e nanocristallini (nc-SiOxNy), che trovano importanti applicazioni in celle fotovoltaiche ad eterogiunzione in silicio, ad alta efficienza. Lo studio è condotto mediante caratterizzazione elettrica e morfologica attraverso tecniche di microscopia a forza atomica (AFM). Sono stati studiati campioni di a-SiOxNy cresciuti con tecnica PECVD (Plasma Enhanced Chemical Vapor Deposition), in cui è stata variata unicamente la distanza tra gli elettrodi durante la deposizione. Sono stati inoltre studiati campioni di nc-SiOxNy, cresciuti con PECVD con una differente percentuale di N2O come gas precursore e un differente tempo di annealing. In entrambi i casi si tratta di un materiale innovativo, le cui proprietà fisiche di base, nonostante le numerose applicazioni, sono ancora poco studiate. L'analisi morfologica, condotta mediante AFM e successiva analisi statistica delle immagini, ha permesso di determinare alcune proprietà morfologiche dei campioni. L’analisi statistica delle immagini è stata validata, dimostrandosi stabile e consistente per lo studio di queste strutture. Lo studio delle proprietà di trasporto è stato condotto mediante acquisizione di mappe di corrente con tecnica conductive-AFM. In questo modo si è ottenuta una mappa di conducibilità locale nanometrica, che permette di comprendere come avviene il trasporto nel materiale. L'analisi di questo materiale mediante tecniche AFM ha permesso di evidenziare che l'annealing produce nei materiali nanocristallini sia un clustering della struttura, sia un significativo aumento della conducibilità locale del materiale. Inoltre la distanza tra gli elettrodi in fase di deposizione ha un leggero effetto sulle dimensioni dei grani. È da notare inoltre che su questi campioni si sono osservate variazioni locali della conducibilità alla nanoscala. L’analisi delle proprietà dei materiali alla nanoscala ha contribuito alla comprensione più approfondita della morfologia e dei meccanismi di trasporto elettronico.
Resumo:
Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati film sottili (circa 10 nm) di silicio amorfo idrogenato (a-Si:H), studiando in particolare leghe a basso contenuto di ossigeno e carbonio. Tali layer andranno ad essere implementati come strati di passivazione per wafer di Si monocristallino in celle solari ad eterogiunzione HIT (heterojunctions with intrinsic thin layer), con le quali recentemente è stato raggiunto il record di efficienza pari a 24.7% . La deposizione è avvenuta mediante PECVD (plasma enhanced chemical vapour deposition). Tecniche di spettroscopia ottica, come FT-IR (Fourier transform infrared spectroscopy) e SE (spettroscopic ellipsometry) sono state utilizzate per analizzare le configurazioni di legami eteronucleari (Si-H, Si-O, Si-C) e le proprietà strutturali dei film sottili: un nuovo metodo è stato implementato per calcolare i contenuti atomici di H, O e C da misure ottiche. In tal modo è stato possibile osservare come una bassa incorporazione (< 10%) di ossigeno e carbonio sia sufficiente ad aumentare la porosità ed il grado di disordine a lungo raggio del materiale: relativamente a quest’ultimo aspetto, è stata sviluppata una nuova tecnica per determinare dagli spettri ellisometrici l’energia di Urbach, che esprime la coda esponenziale interna al gap in semiconduttori amorfi e fornisce una stima degli stati elettronici in presenza di disordine reticolare. Nella seconda parte della tesi sono stati sviluppati esperimenti di annealing isocrono, in modo da studiare i processi di cristallizzazione e di effusione dell’idrogeno, correlandoli con la degradazione delle proprietà optoelettroniche. L’analisi dei differenti risultati ottenuti studiando queste particolari leghe (a-SiOx e a-SiCy) ha permesso di concludere che solo con una bassa percentuale di ossigeno o carbonio, i.e. < 3.5 %, è possibile migliorare la risposta termica dello specifico layer, ritardando i fenomeni di degradazione di circa 50°C.