1 resultado para Symptoms.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- Aberdeen University (5)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archive of European Integration (3)
- Aston University Research Archive (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (53)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (188)
- Brock University, Canada (5)
- CentAUR: Central Archive University of Reading - UK (23)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (5)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (11)
- DigitalCommons@The Texas Medical Center (17)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (6)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eScholarship Repository - University of California (1)
- Glasgow Theses Service (2)
- Hospitais da Universidade de Coimbra (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (12)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (62)
- Repositorio de la Vicerrectoría de Investigación de la Universidad de Costa Rica (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (5)
- Scielo España (1)
- Scielo Saúde Pública - SP (44)
- Scientific Open-access Literature Archive and Repository (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (1)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (77)
- Université de Montréal (4)
- Université de Montréal, Canada (14)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (2)
- University of Michigan (31)
- University of Queensland eSpace - Australia (53)
- University of Washington (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Twitter is a highly popular social media which on one hand allows information transmission in real time and on the other hand represents a source of open access homogeneous text data. We propose an analysis of the most common self-reported COVID symptoms from a dataset of Italian tweets to investigate the evolution of the pandemic in Italy from the end of September 2020 to the end of January 2021. After manually filtering tweets actually describing COVID symptoms from the database - which contains words related to fever, cough and sore throat - we discuss usefulness of such filtering. We then compare our time series with the daily data of new hospitalisations in Italy, with the aim of building a simple linear regression model that accounts for the delay which is observed from the tweets mentioning individual symptoms to new hospitalisations. We discuss both the results and limitations of linear regression given that our data suggests that the relationship between time series of symptoms tweets and of new hospitalisations changes towards the end of the acquisition.