4 resultados para Surface Organometallic Chemistry on Metals

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cubane is a peculiar cube-shaped alkane molecule with a rigid, regular structure. This makes it a good scaffold, i.e. a molecular platform to which the substituents are arranged in a specific and fixed orientation. Moreover, cubane has a body diagonal of 2.72 Å, very similar to the distance across the benzene ring, i.e. 2.79 Å. Thus, it would be possible to use cubane as a scaffold in medicinal and material chemistry as a benzene isostere 1,2. This could lead to advantages in terms of solubility and toxicity and could provide novel properties. For this purpose, the possibility of performing “modern organic chemistryon the cubane scaffold has to be studied. This project was entirely carried out in the framework of the Erasmus+ mobility programme at the Trinity College (Dublin, IRL) under the supervision of prof. M. O. Senge. The main goal of this project was to widen the knowledge on cubane chemistry. In particular, it was decided to test reactions that were never applied to the scaffold before, such as metathesis of 4-iodo-1-vinylcubane and Stetter reaction of 1-iodocubane-4-carboxaldehyde. These two molecules were synthesized in 10 and 9 steps respectively from commercially available cyclopentanone, following a known procedure. Unfortunately, metathesis with different olefins, such as styrene, α,β unsaturated compounds and linear α-olefins failed under different conditions, highlighting cubane behaves as a Type IV, challenging olefin under metathesis conditions. Even the employment of a specific catalyst for hindered olefins failed in the cross-coupling with linear α-olefins. On the other hand, two new molecules were synthesized via Stetter reaction and benzoin condensation respectively. Even if the majority of the reactions were not successful, this work can be seen as an inspiration for further investigation on cubane chemistry, as new questions were raised and new opportunities were envisioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro tratta lo studio dei fenomeni aeroelastici di interazione fra fluido e struttura, con il fine di provare a simularli mediante l’ausilio di un codice agli elementi finiti. Nel primo capitolo sono fornite alcune nozioni di fluidodinamica, in modo da rendere chiari i passaggi teorici fondamentali che portano alle equazioni di Navier-Stokes governanti il moto dei fluidi viscosi. Inoltre è illustrato il fenomeno della formazione di vortici a valle dei corpi tozzi dovuto alla separazione dello strato limite laminare, con descrizione anche di alcuni risultati ottenuti dalle simulazioni numeriche. Nel secondo capitolo vengono presi in rassegna i principali fenomeni di interazione fra fluido e struttura, cercando di metterne in luce le fondamenta della trattazione analitica e le ipotesi sotto le quali tale trattazione è valida. Chiaramente si tratta solo di una panoramica che non entra in merito degli sviluppi della ricerca più recente ma fornisce le basi per affrontare i vari problemi di instabilità strutturale dovuti a un particolare fenomeno di interazione con il vento. Il terzo capitolo contiene una trattazione più approfondita del fenomeno di instabilità per flutter. Tra tutti i fenomeni di instabilità aeroelastica delle strutture il flutter risulta il più temibile, soprattutto per i ponti di grande luce. Per questo si è ritenuto opportuno dedicargli un capitolo, in modo da illustrare i vari procedimenti con cui si riesce a determinare analiticamente la velocità critica di flutter di un impalcato da ponte, a partire dalle funzioni sperimentali denominate derivate di flutter. Al termine del capitolo è illustrato il procedimento con cui si ricavano sperimentalmente le derivate di flutter di un impalcato da ponte. Nel quarto capitolo è presentato l’esempio di studio dell’impalcato del ponte Tsing Ma ad Hong Kong. Sono riportati i risultati analitici dei calcoli della velocità di flutter e di divergenza torsionale dell’impalcato e i risultati delle simulazioni numeriche effettuate per stimare i coefficienti aerodinamici statici e il comportamento dinamico della struttura soggetta all’azione del vento. Considerazioni e commenti sui risultati ottenuti e sui metodi di modellazione numerica adottati completano l’elaborato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming and ocean acidification, due to rising atmospheric levels of CO2, represent an actual threat to terrestrial and marine environments. Since Industrial Revolution, in less of 250 years, pH of surface seawater decreased on average of 0.1 unit, and is expected to further decreases of approximately 0.3-0.4 units by the end of this century. Naturally acidified marine areas, such as CO2 vent systems at the Ischia Island, allow to study acclimatation and adaptation of individual species as well as the structure of communities, and ecosystems to OA. The main aim of this thesis was to study how hard bottom sublittoral benthic assemblages changed trough time along a pH gradient. For this purpose, the temporal dynamics of mature assemblages established on artificial substrates (volcanic tiles) over a 3 year- period were analysed. Our results revealed how composition and dynamics of the community were altered and highly simplified at different level of seawater acidification. In fact, extreme low values of pH (approximately 6.9), affected strongly the assemblages, reducing diversity both in terms of taxa and functional groups, respect to lower acidification levels (mean pH 7.8) and ambient conditions (8.1 unit). Temporal variation was observed in terms of species composition but not in functional groups. Variability was related to species belonging to the same functional group, suggesting the occurrence of functional redundancy. Therefore, the analysis of functional groups kept information on the structure, but lost information on species diversity and dynamics. Decreasing in ocean pH is only one of many future global changes that will occur at the end of this century (increase of ocean temperature, sea level rise, eutrophication etc.). The interaction between these factors and OA could exacerbate the community and ecosystem effects showed by this thesis.