2 resultados para Supersonic nozzles

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the industry of steelmaking, the process of galvanizing is a treatment which is applied to protect the steel from corrosion. The air knife effect (AKE) occurs when nozzles emit a steam of air on the surfaces of a steel strip to remove excess zinc from it. In our work we formalized the problem to control the AKE and we implemented, with the R&D dept.of MarcegagliaSPA, a DL model able to drive the AKE. We call it controller. It takes as input the tuple : a tuple of the physical conditions of the process line (t,h,s) with the target value of the zinc coating (c); and generates the expected tuple of (pres and dist) to drive the mechanical nozzles towards the (c). According to the requirements we designed the structure of the network. We collected and explored the data set of the historical data of the smart factory. Finally, we designed the loss function as sum of three components: the minimization between the coating addressed by the network and the target value we want to reach; and two weighted minimization components for both pressure and distance. In our solution we construct a second module, named coating net, to predict the coating of zinc resulting from the AKE when the conditions are applied to the prod. line. Its structure is made by a linear and a deep nonlinear “residual” component learned by empirical observations. The predictions made by the coating nets are used as ground truth in the loss function of the controller. By tuning the weights of the different components of the loss function, it is possible to train models with slightly different optimization purposes. In the tests we compared the regularization of different strategies with the standard one in condition of optimal estimation for both; the overall accuracy is ± 3 g/m^2 dal target for all of them. Lastly, we analyze how the controller modeled the current solutions with the new logic: the sub-optimal values of pres and dist can be optimize of 50% and 20%.