2 resultados para Styrene
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
Cubane is a peculiar cube-shaped alkane molecule with a rigid, regular structure. This makes it a good scaffold, i.e. a molecular platform to which the substituents are arranged in a specific and fixed orientation. Moreover, cubane has a body diagonal of 2.72 Å, very similar to the distance across the benzene ring, i.e. 2.79 Å. Thus, it would be possible to use cubane as a scaffold in medicinal and material chemistry as a benzene isostere 1,2. This could lead to advantages in terms of solubility and toxicity and could provide novel properties. For this purpose, the possibility of performing “modern organic chemistry” on the cubane scaffold has to be studied. This project was entirely carried out in the framework of the Erasmus+ mobility programme at the Trinity College (Dublin, IRL) under the supervision of prof. M. O. Senge. The main goal of this project was to widen the knowledge on cubane chemistry. In particular, it was decided to test reactions that were never applied to the scaffold before, such as metathesis of 4-iodo-1-vinylcubane and Stetter reaction of 1-iodocubane-4-carboxaldehyde. These two molecules were synthesized in 10 and 9 steps respectively from commercially available cyclopentanone, following a known procedure. Unfortunately, metathesis with different olefins, such as styrene, α,β unsaturated compounds and linear α-olefins failed under different conditions, highlighting cubane behaves as a Type IV, challenging olefin under metathesis conditions. Even the employment of a specific catalyst for hindered olefins failed in the cross-coupling with linear α-olefins. On the other hand, two new molecules were synthesized via Stetter reaction and benzoin condensation respectively. Even if the majority of the reactions were not successful, this work can be seen as an inspiration for further investigation on cubane chemistry, as new questions were raised and new opportunities were envisioned.