3 resultados para Stress fields

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatigue life in metals is predicted utilizing regression analysis of large sets of experimental data, thus representing the material’s macroscopic response. Furthermore, a high variability in the short crack growth (SCG) rate has been observed in polycrystalline materials, in which the evolution and distributionof local plasticity is strongly influenced by the microstructure features. The present work serves to (a) identify the relationship between the crack driving force based on the local microstructure in the proximity of the crack-tip and (b) defines the correlation between scatter observed in the SCG rates to variability in the microstructure. A crystal plasticity model based on the fast Fourier transform formulation of the elasto-viscoplastic problem (CP-EVP-FFT) is used, since the ability to account for the both elastic and plastic regime is critical in fatigue. Fatigue is governed by slip irreversibility, resulting in crack growth, which starts to occur during local elasto-plastic transition. To investigate the effects of microstructure variability on the SCG rate, sets of different microstructure realizations are constructed, in which cracks of different length are introduced to mimic quasi-static SCG in engineering alloys. From these results, the behavior of the characteristic variables of different length scale are analyzed: (i) Von Mises stress fields (ii) resolved shear stress/strain in the pertinent slip systems, and (iii) slip accumulation/irreversibilities. Through fatigue indicator parameters (FIP), scatter within the SCG rates is related to variability in the microstructural features; the results demonstrate that this relationship between microstructure variability and uncertainty in fatigue behavior is critical for accurate fatigue life prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General Relativity is one of the greatest scientific achievementes of the 20th century along with quantum theory. These two theories are extremely beautiful and they are well verified by experiments, but they are apparently incompatible. Hints towards understanding these problems can be derived studying Black Holes, some the most puzzling solutions of General Relativity. The main topic of this Master Thesis is the study of Black Holes, in particular the Physics of Hawking Radiation. After a short review of General Relativity, I study in detail the Schwarzschild solution with particular emphasis on the coordinates systems used and the mathematical proof of the classical laws of Black Hole "Thermodynamics". Then I introduce the theory of Quantum Fields in Curved Spacetime, from Bogolubov transformations to the Schwinger-De Witt expansion, useful for the renormalization of the stress energy tensor. After that I introduce a 2D model of gravitational collapse to study the Hawking radiation phenomenon. Particular emphasis is given to the analysis of the quantum states, from correlations to the physical implication of this quantum effect (e.g. Information Paradox, Black Hole Thermodynamics). Then I introduce the renormalized stress energy tensor. Using the Schwinger-De Witt expansion I renormalize this object and I compute it analytically in the various quantum states of interest. Moreover, I study the correlations between these objects. They are interesting because they are linked to the Hawking radiation experimental search in acoustic Black Hole models. In particular I find that there is a characteristic peak in correlations between points inside and outside the Black Hole region, which correpsonds to entangled excitations inside and outside the Black Hole. These peaks hopefully will be measurable soon in supersonic BEC.