3 resultados para Storage technologies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.
Resumo:
Research has demonstrated that mining activities can cause serious impacts on the environment, as well as the surrounding communities, mainly due to the unsafe storage of mine tailings. This research focuses on the sustainability assessment of new technologies for the recovery of metals from mine residues. The assessment consists in the evaluation of the environmental, economic, and social impacts through the Life Cycle based methods: Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (SLCA). The analyses are performed on the Mondo Minerals bioleaching project, which aim is to recover nickel and cobalt from the Sotkamo and Vuonos mine tailings. The LCA demonstrates that the project contributes to the avoided production of nickel and cobalt concentrates from new resources, hence reducing several environmental impacts. The LCC analysis shows that the company’s main costs are linked to the bioleaching process, caused by electricity consumption and the chemicals used. The SLCA analyses the impacts on three main stakeholder categories: workers, local community, and society. The results demonstrated that a fair salary (or the absence of it) impacts the workers the most, while the local community stakeholder category impacts are related to the access to material resources. The health and safety category is the most impacted category for the society stakeholder. The environmental and economic analyses demonstrate that the recovery of mine tailings may represents a good opportunity for mine companies both to reduce the environmental impacts linked to mine tailings and to increase the profitability. In particular, the project helps reduce the amounts of metals extracted from new resources and demonstrates that the use of the bioleaching technology for the extraction of metals can be economically profitable.