2 resultados para Stability in organic solvents
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
This Master thesis presents the results obtained in the curricular traineeship, carried out within the laboratories of the Department of Chemistry of the University of Bergen, during the Erasmus period, and within the Department of Industrial Chemistry of the University of Bologna. The project followed in Bergen concerned the synthesis of key intermediates used for the functionalization of the backbone of imidazole, using N,N'- diiodo-5,5-dimethylhydantoin (“DIH”) as an iodinating agent, and employing an innovative kind of chemical reactor: the “Multijet Oscillating Disc Millireactor” (MJOD Reactor). Afterwards, the work performed in Bologna consisted in verifying the stability in solution of the above mentioned N,N'-diiodo-5,5-dimethylhydantoin utilising spectrophotometric techniques and High Performance Liquid Chromatography analyses (HPLC).