2 resultados para Spectral method with domain decomposition
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.