4 resultados para Species-specific neighbour effects
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.
Resumo:
Longstanding taxonomic ambiguity and uncertainty exist in the identification of the common (M. mustelus) and blackspotted (M. punctulatus) smooth-hound in the Adriatic Sea. The lack of a clear and accurate method of morphological identification, leading to frequent misidentification, prevents the collation of species-specific landings and survey data for these fishes and hampers the delineation of the distribution ranges and stock boundaries of the species. In this context, adequate species-specific conservation and management strategies can not be applied without risks of population declining and local extinction. In this thesis work I investigated the molecular ecology of the two smooth-hound sharks which are abundant in the demersal trawl surveys carried out in the NC Adriatic Sea to monitor and assess the fishery resources. Ecological and evolutionary relationships were assessed by two molecular tests: a DNA barcoding analysis to improve species identification (and consequently the knowledge of their spatial ecology and taxonomy) and a hybridization assay based on the nuclear codominant marker ITS2 to evaluate reproductive interactions (hybridization or gene introgression). The smooth-hound sharks (N=208) were collected during the MEDITS 2008 and 2010 campaigns along the Italian and Croatian coasts of the Adriatic Sea, in the Sicilian Channel and in the Algerian fisheries. Since the identification based on morphological characters is not strongly reliable, I performed a molecular identification of the specimens producing for each one the cytochrome oxidase subunit 1 (COI) gene sequence (ca. 640 bp long) and compared them with reference sequences from different databases (GenBank and BOLD). From these molecular ID data I inferred the distribution of the two target species in the NC Adriatic Sea. In almost the totality of the MEDITS hauls I found no evidence of species sympatry. The data collected during the MEDITS survey showed an almost different distribution of M. mustelus (confined along the Italian coasts) and M. punctulatus (confined along the Croatian coasts); just one sample (Gulf of Venice, where probably the ranges of the species overlap) was found to have catches of both the species. Despite these data results suggested no interaction occurred between my two target species at least during the summertime (the period in which MEDITS survey is carried out), I still wanted to know if there were inter-species reproductive interactions so I developed a simple molecular genetic method to detect hybridization. This method is based on DNA sequence polymorphism among species in the nuclear ribosomal Internal Transcribed Spacer 2 locus (ITS2). Its application to the 208 specimens collected raised important questions regarding the ecology of this two species in the Adriatic Sea. In fact results showed signs of hybridization and/or gene introgression in two sharks collected during the trawl survey of 2008 and one collected during the 2010 one along the Italian and Croatian coasts. In the case that it will be confirmed the hybrid nature of these individuals, a spatiotemporal overlapping of the mating behaviour and ecology must occur. At the spatial level, the northern part of the Adriatic Sea (an area where the two species occur with high frequency of immature individuals) could likely play the role of a common nursery area for both species.
Resumo:
Temperature and light intensity is the most important environmental parameters that influence circadian cycle of scleractinian corals. In this context, modulation of the biomarkers Hsp60 and Hsp70 in situ was investigated by three different healthy coral species (Acropora tenuis, Echinopora lamellosa and Porites lobata) not stress induced during time course of 24h. Significance species-specific modulation under natural conditions is displayed by all corals under study. A strong fluctuation in Hsps expression is shown by the most susceptible, branched coral A. tenuis, instead of fine and low modulation is shown by the massive coral P. lobata. From the results match between morphology difference and physiological difference response its suggest and similarity pattern between Hsps with different cellular compartments location is suggested too. Starting from this study health of coral reefs could be able to be investigated in the future with a set of biomarkers composed also by Hsps which will be set up.
Resumo:
The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.