2 resultados para Special purpose vehicles.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fra le varie ragioni della crescente pervasività di Internet in molteplici settori di mercato del tutto estranei all’ICT, va senza dubbio evidenziata la possibilità di creare canali di comunicazione attraverso i quali poter comandare un sistema e ricevere da esso informazioni di qualsiasi genere, qualunque distanza separi controllato e controllore. Nel caso specifico, il contesto applicativo è l’automotive: in collaborazione col Dipartimento di Ingegneria Elettrica dell’Università di Bologna, ci si è occupati del problema di rendere disponibile a distanza la grande quantità di dati che i vari sotto-sistemi componenti una automobile elettrica si scambiano fra loro, sia legati al tipo di propulsione, elettrico appunto, come i livelli di carica delle batterie o la temperatura dell’inverter, sia di natura meccanica, come i giri motore. L’obiettivo è quello di permettere all’utente (sia esso il progettista, il tecnico riparatore o semplicemente il proprietario) il monitoraggio e la supervisione dello stato del mezzo da remoto nelle sue varie fasi di vita: dai test eseguiti su prototipo in laboratorio, alla messa in strada, alla manutenzione ordinaria e straordinaria. L’approccio individuato è stato quello di collezionare e memorizzare in un archivio centralizzato, raggiungibile via Internet, tutti i dati necessari. Il sistema di elaborazione a bordo richiede di essere facilmente integrabile, quindi di piccole dimensioni, e a basso costo, dovendo prevedere la produzione di molti veicoli; ha inoltre compiti ben definiti e noti a priori. Data la situazione, si è quindi scelto di usare un sistema embedded, cioè un sistema elettronico di elaborazione progettato per svolgere un limitato numero di funzionalità specifiche sottoposte a vincoli temporali e/o economici. Apparati di questo tipo sono denominati “special purpose”, in opposizione ai sistemi di utilità generica detti “general purpose” quali, ad esempio, i personal computer, proprio per la loro capacità di eseguire ripetutamente un’azione a costo contenuto, tramite un giusto compromesso fra hardware dedicato e software, chiamato in questo caso “firmware”. I sistemi embedded hanno subito nel corso del tempo una profonda evoluzione tecnologica, che li ha portati da semplici microcontrollori in grado di svolgere limitate operazioni di calcolo a strutture complesse in grado di interfacciarsi a un gran numero di sensori e attuatori esterni oltre che a molte tecnologie di comunicazione. Nel caso in esame, si è scelto di affidarsi alla piattaforma open-source Arduino; essa è composta da un circuito stampato che integra un microcontrollore Atmel da programmare attraverso interfaccia seriale, chiamata Arduino board, ed offre nativamente numerose funzionalità, quali ingressi e uscite digitali e analogici, supporto per SPI, I2C ed altro; inoltre, per aumentare le possibilità d’utilizzo, può essere posta in comunicazione con schede elettroniche esterne, dette shield, progettate per le più disparate applicazioni, quali controllo di motori elettrici, gps, interfacciamento con bus di campo quale ad esempio CAN, tecnologie di rete come Ethernet, Bluetooth, ZigBee, etc. L’hardware è open-source, ovvero gli schemi elettrici sono liberamente disponibili e utilizzabili così come gran parte del software e della documentazione; questo ha permesso una grande diffusione di questo frame work, portando a numerosi vantaggi: abbassamento del costo, ambienti di sviluppo multi-piattaforma, notevole quantità di documentazione e, soprattutto, continua evoluzione ed aggiornamento hardware e software. È stato quindi possibile interfacciarsi alla centralina del veicolo prelevando i messaggi necessari dal bus CAN e collezionare tutti i valori che dovevano essere archiviati. Data la notevole mole di dati da elaborare, si è scelto di dividere il sistema in due parti separate: un primo nodo, denominato Master, è incaricato di prelevare dall’autovettura i parametri, di associarvi i dati GPS (velocità, tempo e posizione) prelevati al momento della lettura e di inviare il tutto a un secondo nodo, denominato Slave, che si occupa di creare un canale di comunicazione attraverso la rete Internet per raggiungere il database. La denominazione scelta di Master e Slave riflette la scelta fatta per il protocollo di comunicazione fra i due nodi Arduino, ovvero l’I2C, che consente la comunicazione seriale fra dispositivi attraverso la designazione di un “master” e di un arbitrario numero di “slave”. La suddivisione dei compiti fra due nodi permette di distribuire il carico di lavoro con evidenti vantaggi in termini di affidabilità e prestazioni. Del progetto si sono occupate due Tesi di Laurea Magistrale; la presente si occupa del dispositivo Slave e del database. Avendo l’obiettivo di accedere al database da ovunque, si è scelto di appoggiarsi alla rete Internet, alla quale si ha oggi facile accesso da gran parte del mondo. Questo ha fatto sì che la scelta della tecnologia da usare per il database ricadesse su un web server che da un lato raccoglie i dati provenienti dall’autovettura e dall’altro ne permette un’agevole consultazione. Anch’esso è stato implementato con software open-source: si tratta, infatti, di una web application in linguaggio php che riceve, sotto forma di richieste HTTP di tipo GET oppure POST, i dati dal dispositivo Slave e provvede a salvarli, opportunamente formattati, in un database MySQL. Questo impone però che, per dialogare con il web server, il nodo Slave debba implementare tutti i livelli dello stack protocollare di Internet. Due differenti shield realizzano quindi il livello di collegamento, disponibile sia via cavo sia wireless, rispettivamente attraverso l’implementazione in un caso del protocollo Ethernet, nell’altro della connessione GPRS. A questo si appoggiano i protocolli TCP/IP che provvedono a trasportare al database i dati ricevuti dal dispositivo Master sotto forma di messaggi HTTP. Sono descritti approfonditamente il sistema veicolare da controllare e il sistema controllore; i firmware utilizzati per realizzare le funzioni dello Slave con tecnologia Ethernet e con tecnologia GPRS; la web application e il database; infine, sono presentati i risultati delle simulazioni e dei test svolti sul campo nel laboratorio DIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesi ha lo scopo di esplorare la produzione di sistemi software per Embedded Systems mediante l'utilizzo di tecniche relative al mondo del Model Driven Software Development. La fase più importante dello sviluppo sarà la definizione di un Meta-Modello che caratterizza i concetti fondamentali relativi agli embedded systems. Tale modello cercherà di astrarre dalla particolare piattaforma utilizzata ed individuare quali astrazioni caratterizzano il mondo degli embedded systems in generale. Tale meta-modello sarà quindi di tipo platform-independent. Per la generazione automatica di codice è stata adottata una piattaforma di riferimento, cioè Arduino. Arduino è un sistema embedded che si sta sempre più affermando perché coniuga un buon livello di performance ed un prezzo relativamente basso. Tale piattaforma permette lo sviluppo di sistemi special purpose che utilizzano sensori ed attuatori di vario genere, facilmente connessi ai pin messi a disposizione. Il meta-modello definito è un'istanza del meta-metamodello MOF, definito formalmente dall'organizzazione OMG. Questo permette allo sviluppatore di pensare ad un sistema sotto forma di modello, istanza del meta-modello definito. Un meta-modello può essere considerato anche come la sintassi astratta di un linguaggio, quindi può essere definito da un insieme di regole EBNF. La tecnologia utilizzata per la definizione del meta-modello è stata Xtext: un framework che permette la scrittura di regole EBNF e che genera automaticamente il modello Ecore associato al meta-modello definito. Ecore è l'implementazione di EMOF in ambiente Eclipse. Xtext genera inoltre dei plugin che permettono di avere un editor guidato dalla sintassi, definita nel meta-modello. La generazione automatica di codice è stata realizzata usando il linguaggio Xtend2. Tale linguaggio permette di esplorare l'Abstract Syntax Tree generato dalla traduzione del modello in Ecore e di generare tutti i file di codice necessari. Il codice generato fornisce praticamente tutta la schematic part dell'applicazione, mentre lascia all'application designer lo sviluppo della business logic. Dopo la definizione del meta-modello di un sistema embedded, il livello di astrazione è stato spostato più in alto, andando verso la definizione della parte di meta-modello relativa all'interazione di un sistema embedded con altri sistemi. Ci si è quindi spostati verso un ottica di Sistema, inteso come insieme di sistemi concentrati che interagiscono. Tale difinizione viene fatta dal punto di vista del sistema concentrato di cui si sta definendo il modello. Nella tesi viene inoltre introdotto un caso di studio che, anche se abbastanza semplice, fornisce un esempio ed un tutorial allo sviluppo di applicazioni mediante l'uso del meta-modello. Ci permette inoltre di notare come il compito dell'application designer diventi piuttosto semplice ed immediato, sempre se basato su una buona analisi del problema. I risultati ottenuti sono stati di buona qualità ed il meta-modello viene tradotto in codice che funziona correttamente.