3 resultados para Soto, Hernando de, ca. 1500-1542
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.
Resumo:
La tesi verte sulle verifiche statiche e sismiche eseguite sulla Ca' Grande dei Malvezzi, edificio facente parte del Complesso di Palazzo Poggi.
Resumo:
The Alburni Massif is the most important karstic area in southern Italy and It contains about 250 caves. Most of these caves are located on the plateau, between 1500 m a.s.l. and 700 m a.s.l., and only a few reach the underground streams that feed the springs and the deep aquifer. The main springs are Grotta di Pertosa-Auletta (CP1) and Auso spring (CP31), both located at 280 m a.s.l., the first on the south-eastern margin whereas the second on south-west margin, and the springs present in Castelcivita area, the Castelcivita-Ausino system (CP2) and Mulino di Castelcivita spring (CP865), located at 60 m a.s.l.. Some other secondary springs are present too. We have monitored Pertosa-Auletta’s spring with a multiparameter logger. This logger has registered data from November 2014 to December 2015 regarding water level, electric conductivity and temperature. The hydrodynamic monitoring has been supported by a sampling campaign in order to obtain chemical water analyses. The work was done from August 2014 to December 2015, not only at Pertosa but also at all the other main springs, and in some caves. It was possible to clarify the behavior of Pertosa-Auletta’s spring, almost exclusively fed by full charge conduits, only marginally affected by seasonal rains. Pertosa-Auletta showed a characteristic Mg/Ca ratio and Mg2+ enrichment, as demonstrated by its saturation index that always showed a dolomite saturation. All other spring have characteristic waters from a chemical point of view. In particular, it highlights the great balance between the components dissolved in the waters of Mulino’ spring opposed to the variability of the nearby Castelcivita-Ausino spring. Regarding the Auso spring the variable behavior in terms of discharge and chemistry is confirmed, greatly influenced by rainfall and, during drought periods, by full charge conduits. Rare element concentrations were also analyzed and allowed to characterize further the different waters. Based on all these data an updated hydrogeological map of the Alburni massif has been drawn, that defines in greater detail the hydrogeological complexes on the basis of lithologies, and therefore of their chemical characteristics.