5 resultados para Songs (High voice) with piano
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel (inverse) structure typical of Me ferrites: MeFe2O4 (Me=Co, Ni, Fe or Cu). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation; magnetite was the oxide showing the slower rate of reduction by ethanol, but on the other hand it was that one which could perform the entire cycle of the process more efficiently. Still the problem of coke formation remains the greater challenge to solve.
Resumo:
Constant developments in the field of offshore wind energy have increased the range of water depths at which wind farms are planned to be installed. Therefore, in addition to monopile support structures suitable in shallow waters (up to 30 m), different types of support structures, able to withstand severe sea conditions at the greater water depths, have been developed. For water depths above 30 m, the jacket is one of the preferred support types. Jacket represents a lightweight support structure, which, in combination with complex nature of environmental loads, is prone to highly dynamic behavior. As a consequence, high stresses with great variability in time can be observed in all structural members. The highest concentration of stresses occurs in joints due to their nature (structural discontinuities) and due to the existence of notches along the welds present in the joints. This makes them the weakest elements of the jacket in terms of fatigue. In the numerical modeling of jackets for offshore wind turbines, a reduction of local stresses at the chord-brace joints, and consequently an optimization of the model, can be achieved by implementing joint flexibility in the chord-brace joints. Therefore, in this work, the influence of joint flexibility on the fatigue damage in chord-brace joints of a numerical jacket model, subjected to advanced load simulations, is studied.
Resumo:
Epoxy resins are very diffused materials due to their high added value deriving from high mechanical proprieties and thermal resistance; for this reason they are widely used both as metallic coatings in aerospace and in food packaging. However, their preparation uses dangerous reagents like bisphenol A and epichlorohydrin respectively classified as suspected of causing damage to fertility and to be carcinogen. Therefore, to satisfy the ever-growing attention to environmental problems and human safeness, we are considering alternative “green” processes through the use of reagents obtained as by-products from other processes and mild experimental conditions, and also economically sustainable and attractive for industries. Following previous results, we carried out the reaction leading to the formation of diphenolic acid (DPA), its allylation and the following epoxidation of the double bonds, all in aqueous solvent. In a second step the obtained product were cross-linked at high temperature with and without the use of hardeners. Then, on the obtained resin, some tests were performed like release in aqueous solution, scratch test and DSC analysis.
Resumo:
This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel structure typical of M-modified non-stoichiometric ferrites: M0,6Fe2,4O4 (M = Co, Mn or Co/Mn). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation. The new materials were tested in terms of both redox proprieties and catalytic activity to generate hydrogen. Still the problem of coke formation remains the greater challenge to solve.
Resumo:
Climate change is occurring at a faster rate than in the past, with an expected increase of mean sea surface temperatures up to 4.8°C by the end of this century. The actual capabilities of marine invertebrates to adapt to these rapid changes has still to be understood. Adult echinoids play a crucial role in the tropical ecosystems where they live. Despite their role, few studies about the effect of temperature increase on their viability have been reported in literature. This thesis work reports a first systematic study on several Caribbean echinoids about their tolerance to temperature rise in the context of global warming. The research - carried out at the Bocas del Toro Station of the Smithsonian Tropical Research Institute, in Panama - focalized on the 6 sea urchins Lytechinus variegatus, L. williamsi, Echinometra lucunter, E. viridis, Tripneustes ventricosus and Eucidaris tribuloides, and the 2 sand dollars Clypeaster rosaceus and C. subdepressus. Mortality and neuromuscular well-being indicators - such as righting response, covering behaviour, adhesion to the substrate, spine and tube feet movements - have been analysed in the temperature range 28-38°C. The righting time RT (i.e., the time necessary for the animal to right itself completely after inversion) measured in the 6 sea urchin species, demonstrated a clearly dependence on the water temperature. The experiments allowed to determine the “thermal safety margin” (TSM) of each species. Echinometra lucunter and E. viridis resulted the most tolerant species to high temperatures with a TSM of 5.5°C, while T. ventricosus was the most vulnerable with a TSM of only 3°C. The study assessed that all the species already live at temperatures close to their upper thermal limit. Their TSMs are comparable to the predicted temperature increase by 2100. In absence of acclimatization to such temperature change, these species could experience severe die-offs, with important consequences for tropical marine ecosystems.