3 resultados para Somatosensory response detection

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nel mondo della sicurezza informatica, le tecnologie si evolvono per far fronte alle minacce. Non è possibile prescindere dalla prevenzione, ma occorre accettare il fatto che nessuna barriera risulterà impenetrabile e che la rilevazione, unitamente ad una pronta risposta, rappresenta una linea estremamente critica di difesa, ma l’unica veramente attuabile per poter guadagnare più tempo possibile o per limitare i danni. Introdurremo quindi un nuovo modello operativo composto da procedure capaci di affrontare le nuove sfide che il malware costantemente offre e allo stesso tempo di sollevare i comparti IT da attività onerose e sempre più complesse, ottimizzandone il processo di comunicazione e di risposta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is the process of characterization for existing civil structures that proposes for damage detection and structural identification. It's based firstly on the collection of data that are inevitably affected by noise. In this work a procedure to denoise the measured acceleration signal is proposed, based on EMD-thresholding techniques. Moreover the velocity and displacement responses are estimated, starting from measured acceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.