2 resultados para Sodium channel, transmembrane ion flux, regulators of ENaC, serine protease, barrier dysfunction

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experiments have revealed the fundamental importance of neuromodulatory action on activity-dependent synaptic plasticity underlying behavioral learning and spatial memory formation. Neuromodulators affect synaptic plasticity through the modification of the dynamics of receptors on the synaptic membrane. However, chemical substances other than neuromodulators, such as receptors co-agonists, can influence the receptors' dynamics and thus participate in determining plasticity. Here we focus on D-serine, which has been observed to affect the activity thresholds of synaptic plasticity by co-activating NMDA receptors. We use a computational model for spatial value learning with plasticity between two place cell layers. The D-serine release is CB1R mediated and the model reproduces the impairment of spatial memory due to the astrocytic CB1R knockout for a mouse navigating in the Morris water maze. The addition of path-constraining obstacles shows how performance impairment depends on the environment's topology. The model can explain the experimental evidence and produce useful testable predictions to increase our understanding of the complex mechanisms underlying learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological and functional unit of all the living organisms is the cell. The transmembrane proteins, localized in the plasma membrane of cells, play a key role in the survival of the cells themselves. These proteins perform a variety of different tasks, for example the control of the homeostasis. In order to control the homeostasis, these proteins have to regulate the concentration of chemical elements, like ions, inside and outside the cell. These regulations are fundamental for the survival of the cell and to understand them we need to understand how transmembrane proteins work. Two of the most important categories of transmembrane proteins are ion channels and transporter proteins. The ion channels have been depth studied at the single molecule level since late 1970s with the development of patch-clamp technique. It is not possible to apply this technique to study the transporter proteins so a new technique is under development in order to investigate the behavior of transporter proteins at the single molecule level. This thesis describes the development of a nanoscale single liposome assay for functional studies of transporter proteins based on quantitative fluorescence microscopy in a highly-parallel manner and in real time. The transporter of interest is the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique will allow the characterization of LMCA1 functionality at the single molecule level. Three systematically characterized fluorescent sensors were tested at the single liposome scale in order to investigate if their properties are suitable to study the function of the transporter of interest. Further studies will be needed in order to characterize the selected calcium sensor and pH sensor both implemented together in single liposomes and in presence of the reconstituted protein LMCA1.