4 resultados para Sociología de la medicina
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nell’ambito di questa Tesi sono state affrontate le fasi di progettazione, sviluppo e caratterizzazione di materiali biomimetici innovativi per la realizzazione di membrane e/o costrutti 3D polimerici, come supporti che mimano la matrice extracellulare, finalizzati alla rigenerazione dei tessuti. Partendo dall’esperienza di ISTEC-CNR e da un’approfondita conoscenza chimica su polimeri naturali quali il collagene, è stata affrontata la progettazione di miscele polimeriche (blends) a base di collagene, addizionato con altri biopolimeri al fine di ottimizzarne i parametri meccanici e la stabilità chimica in condizioni fisiologiche. I polimeri naturali chitosano ed alginato, di natura polisaccaridica, già noti per la loro biocompatibilità e selezionati come additivi rinforzanti per il collagene, si sono dimostrati idonei ad interagire con le catene proteiche di quest’ultimo formando blends omogenei e stabili. Al fine di ottimizzare l’interazione chimica tra i polimeri selezionati, sono stati investigati diversi processi di blending alla base dei quali è stato applicato un processo complesso di co-fibrazione-precipitazione: sono state valutate diverse concentrazioni dei due polimeri coinvolti e ottimizzato il pH dell’ambiente di reazione. A seguito dei processi di blending, non sono state registrate alterazioni sostanziali nelle caratteristiche chimiche e nella morfologia fibrosa del collagene, a riprova del fatto che non hanno avuto luogo fenomeni di denaturazione della sua struttura nativa. D’altro canto entrambe le tipologie di compositi realizzati, possiedano proprietà chimico-fisiche peculiari, simili ma non identiche a quelle dei polimeri di partenza, risultanti di una reale interazione chimica tra le due molecole costituenti il blending. Per entrambi i compositi, è stato osservato un incremento della resistenza all’attacco dell’enzima collagenasi ed elevato grado di swelling, quest’ultimo lievemente inferiore per il dispositivo contenente chitosano. Questo aspetto, negativo in generale per quanto concerne la progettazione di impianti per la rigenerazione dei tessuti, può avere aspetti positivi poiché la minore permeabilità nei confronti dei fluidi corporei implica una maggiore resistenza verso enzimi responsabili della degradazione in vivo. Studi morfologici al SEM hanno consentito di visualizzare le porosità e le caratteristiche topografiche delle superfici evidenziando in molti casi morfologie ibride che confermano il buon livello d’interazione tra le fasi; una più bassa omogeneità morfologica si è osservata nel caso dei composti collagene-alginato e solo dopo reidratazione dello scaffold. Per quanto riguarda le proprietà meccaniche, valutate in termini di elasticità e resistenza a trazione, sono state rilevate variazioni molto basse e spesso dentro l’errore sperimentale per quanto riguarda il modulo di Young; discorso diverso per la resistenza a trazione, che è risultata inferiore per i campione di collagene-alginato. Entrambi i composti hanno comunque mostrato un comportamento elastico con un minore pre-tensionamento iniziale, che li rendono promettenti nelle applicazioni come impianti per la rigenerazione di miocardio e tendini. I processi di blending messi a punto nel corso della ricerca hanno permesso di ottenere gel omogenei e stabili per mezzo dei quali è stato possibile realizzare dispositivi con diverse morfologie per diversi ambiti applicativi: dispositivi 2D compatti dall’aspetto di membrane semitrasparenti idonei per rigenerazione del miocardio e ligamenti/tendini e 3D porosi, ottenuti attraverso processi di liofilizzazione, con l’aspetto di spugne, idonei alla riparazione/rigenerazione osteo-cartilaginea. I test di compatibilità cellulare con cardiomioblasti, hanno dimostrato come entrambi i materiali compositi realizzati risultino idonei a processi di semina di cellule differenziate ed in grado di promuovere processi di proliferazione cellulare, analogamente a quanto avviene per il collagene puro.
Resumo:
Una delle grandi sfide della medicina moderna e dell’ingegneria biomedica è rappresentata dalla rigenerazione e il recupero dei tessuti nervosi. I danni al Sistema Nervoso Centrale (SNC) e Periferico (SNP) provocano effetti irreversibili e influiscono sulla qualità della vita dei pazienti. L’ingegneria tissutale è stata definita come “un campo interdisciplinare che applica i principi dell’ingegneria e delle scienze della vita per lo sviluppo di sostituti biologici che ripristinino, mantengano, o migliorino la funzione di un tessuto o di un intero organo” (Langer R et al, 1993). Lo sviluppo dei biomateriali, i progressi scientifici nel campo delle cellule staminali e dei fattori di crescita, nonché le migliorie nelle tecniche di differenziazione e del rilascio dei farmaci offrono nuove opportunità di sviluppo terapeutico. Sono stati infatti creati tessuti in laboratorio attraverso la combinazione di matrici extracellulari ingegnerizzate, comunemente definite scaffold, cellule e molecole biologicamente attive. Tali “impalcature”, forniscono un supporto fisico e biochimico alla crescita delle cellule nervose. In quest’ottica si configura come essenziale il contributo della seta e di una sua particolare molecola: la fibroina. Quest’ultima grazie alle specifiche caratteristiche di biocompatibilità, lenta degradabilità e alle notevoli proprietà meccaniche, è stata ampiamente studiata, in anni recenti, per nuove applicazioni in ambito biomedico, come nel caso dell’ingegneria dei tessuti e del rilascio di farmaci. La fibroina della seta utilizzabile in vari formati quali film, fibre, reti, maglie, membrane, gel e spugne supporta l'adesione, la proliferazione e la differenziazione in vitro di diversi tipi di cellule. In particolare studi recenti indicano che la seta ha una buona compatibilità per la crescita di cellule neuronali dell'ippocampo. In questo elaborato saranno presentate le caratteristiche della fibroina della seta come biomateriale, con particolare riferimento all’ingegnerizzazione e al processo di fabbricazione degli scaffold finalizzati al supporto della rigenerazione cellulare – neuronale in caso di insulti traumatici, acuti e/o cronici del Sistema Nervoso.
Resumo:
La presente tesi ha come obiettivo quello di illustrare il flusso informativo che gestisce lo scambio dei dati relativi a cure radioterapiche nell’ambiente di medicina nucleare. La radioterapia comprende tutte quelle cure a base di sostanze radioattive o radiazioni che vengono somministrate a scopo diagnostico o terapeutico. Le due tecniche più utilizzate sono la brachiradioterapia e la radioterapia a fasci esterni. La prima è utilizza solo in casi selezionati di tumori direttamente accessibili e la sua caratteristica principale è la rapida diminuzione della dose con l'allontanarsi dalla sorgente, la seconda tecnica invece consiste nell’irradiare la zona interessata dall’esterno, utilizzando come sorgente di radiazioni una macchina chiamata acceleratore lineare, posta all’esterno del corpo del paziente. Questa terapia ha come obiettivo primario quello di ottenere la migliore distribuzione di dose nel volume bersaglio, risparmiando quanto più possibile i tessuti sani. Già dalla nascita della radioterapia, questa tecnica era caratterizzata dalla presenza di immagini digitali, cioè al contrario di altri reparti radiologici dove le immagini diagnostiche venivano impresse su pellicole, qui le informazioni circolavano già in formato elettronico. Per questo motivo già da subito si è avvertita l’esigenza di trovare una modalità per lo scambio, in maniera efficiente e sicura, di dati clinici per organizzare al meglio la cura del paziente e la pianificazione, anche con macchinari di diversi produttori, del trattamento radioterapico. In tutto questo ha svolto un ruolo fondamentale la proposta di IHE del framework di medicina nucleare, dove si dettavano linee guida per coordinare in maniera semplice e vantaggiosa l’integrazione informativa dei vari attori del processo di cura radioterapico.