3 resultados para Small World Graphs
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questo lavoro di tesi tratta il tema delle reti complesse, mostrando i principali modelli di rete complessa quali: il modello Random, il modello Small-World ed il modello Scale-free; si introdurranno alcune metriche usate per descrivere le reti complesse quali la Degree centrality, la Closeness centrality e la Betweenness centrality; si descriveranno i problemi da tenere in considerazione durante la definizione e l’implementazione di algoritmi su grafi; i modelli di calcolo su cui progettare gli algoritmi per risolvere i problemi su grafi; un’analisi prestazionale degli algoritmi proposti per calcolare i valori di Beweenness centrality su grafi di medio-grandi dimensioni. Parte di questo lavoro di tesi è consistito nello sviluppo di LANA, LArge-scale Network Analyzer, un software che permette il calcolo e l’analisi di varie metriche di centralità su grafo.
Resumo:
Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi di grafi incontrano in architetture distribuite costituite da personal computer. In particolare, analizza il comportamento dell'algoritmo del PageRank così come implementato in una popolare libreria C++ di analisi di grafi distribuiti, la Parallel Boost Graph Library (Parallel BGL). I risultati qui presentati mostrano che il modello di programmazione parallela Bulk Synchronous Parallel è inadatto all'implementazione efficiente del PageRank su cluster costituiti da personal computer. L'implementazione analizzata ha infatti evidenziato una scalabilità negativa, il tempo di esecuzione dell'algoritmo aumenta linearmente in funzione del numero di processori. Questi risultati sono stati ottenuti lanciando l'algoritmo del PageRank della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l'uno, usando diversi grafi scelti in modo da facilitare l'identificazione delle variabili che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno dato risultati differenti, mostrando che c'è una relazione tra il coefficiente di clustering e l'inclinazione della retta che rappresenta il tempo in funzione del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso coefficiente di clustering, hanno rappresentato il caso peggiore nei test del PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clustering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo hanno mostrato un'influenza sul tempo di esecuzione particolarmente interessante. Infatti, si è mostrato che la relazione tra il numero di nodi e il numero di archi determina il tempo totale.
Resumo:
Gli algoritmi di gossip sono utilizzati per la disseminazione di messaggi in una rete peer-to-peer. La tesi tratta lo sviluppo, l'implementazione e l'analisi di quattro nuovi algoritmi di gossip "a due fasi". Gli algoritmi sono stati sviluppati e testati con il simulatore LUNES per poi essere analizzati in vari confronti con gli algoritmi classici dell'ambito, ovvero Fixed Probability e Conditional Broadcast. Le prove sono state effettuate su varie tipologie di grafi, ovvero Random, Scale-free, Small-world e K-Regular.