19 resultados para Simulation and experimental results

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent energy dissipation is presented in the theoretical context of the famous Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help the reader understand the approach to turbulence study, as well as give some basic insights to the problem. A clear distinction is made amongst dissipation, pseudo-dissipation and dissipation surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into internal energy, which makes this quantity a fundamental characteristic to investigate in order to enhance our understanding of turbulence. The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of the three dimensional velocity field. Once considering an hot-wire technique to measure dissipation we need to deal with surrogates of dissipation, since not all the terms can be measured. The analysis of surrogates is the main topic of this work. In particular two flows, the turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due to their simple structure. Observations made in the canonic flows are often transferable to more complicated and interesting cases, with many industrial applications. The main tools of investigation are DNS simulations and experimental measures. DNS data are used as a benchmark for the experimental results since all the components of dissipation are known within the numerical simulation. The results of some DNS were already available at the start of this thesis, so the main work consisted in reading and processing the data. Experiments were carried out by means of hot-wire anemometry, described in detail on a theoretical and practical level. The study of DNS data of a turbulent channel at Re=298 reveals that the traditional surrogate can be improved Consequently two new surrogates are proposed and analysed, based on terms of the velocity gradient that are easy to measure experimentally. We manage to find a formulation that improves the accuracy of surrogates by an order of magnitude. For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our experimental facility CAT at Re=70000, are compared to validate the experiment. It is found that the ratio between components of the dissipation differs between DNS and experimental data. Possible errors in both sets of data are discussed, and some ways to improve the data are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of homologation of bioethanol to butanol and higher alcohols via the Guerbet reaction was computationally and experimentally investigated. The catalytic pathway involves a ruthenium-based complex and a base co-catalyst which work simultaneously. Due to selectivity issues, secondary products were formed and high competition between main pathway and side reactions was recorded. Herein, the overall catalytic mechanism for all the processes involved in was investigated, also considering the principal side reactions, using density functional theory (DFT) methods and experiments to confirm theoretical outcomes. Due to the complexity of the reaction network, kinetic simulations were established from DFT results, confirming experimental products distribution and giving insights into the factors governing the reaction mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous types of acute respiratory failure are routinely treated using non-invasive ventilatory support (NIV). Its efficacy is well documented: NIV lowers intubation and death rates in various respiratory disorders. It can be delivered by means of face masks or head helmets. Currently the scientific community’s interest about NIV helmets is mostly focused on optimising the mixing between CO2 and clean air and on improving patient comfort. To this end, fluid dynamic analysis plays a particularly important role and a two- pronged approach is frequently employed. While on one hand numerical simulations provide information about the entire flow field and different geometries, they exhibit require huge temporal and computational resources. Experiments on the other hand help to validate simulations and provide results with a much smaller time investment and thus remain at the core of research in fluid dynamics. The aim of this thesis work was to develop a flow bench and to utilise it for the analysis of NIV helmets. A flow test bench and an instrumented mannequin were successfully designed, produced and put into use. Experiments were performed to characterise the helmet interface in terms of pressure drop and flow rate drop over different inlet flow rates and outlet pressure set points. Velocity measurements by means of Particle Image Velocimetry were performed. Pressure drop and flow rate characteristics from experiments were contrasted with CFD data and sufficient agreement was observed between both numerical and experimental results. PIV studies permitted qualitative and quantitative comparisons with numerical simulation data and offered a clear picture of the internal flow behaviour, aiding the identification of coherent flow features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic biology has recently had a great development, many papers have been published and many applications have been presented, spanning from the production of biopharmacheuticals to the synthesis of bioenergetic substrates or industrial catalysts. But, despite these advances, most of the applications are quite simple and don’t fully exploit the potential of this discipline. This limitation in complexity has many causes, like the incomplete characterization of some components, or the intrinsic variability of the biological systems, but one of the most important reasons is the incapability of the cell to sustain the additional metabolic burden introduced by a complex circuit. The objective of the project, of which this work is part, is trying to solve this problem through the engineering of a multicellular behaviour in prokaryotic cells. This system will introduce a cooperative behaviour that will allow to implement complex functionalities, that can’t be obtained with a single cell. In particular the goal is to implement the Leader Election, this procedure has been firstly devised in the field of distributed computing, to identify the process that allow to identify a single process as organizer and coordinator of a series of tasks assigned to the whole population. The election of the Leader greatly simplifies the computation providing a centralized control. Further- more this system may even be useful to evolutionary studies that aims to explain how complex organisms evolved from unicellular systems. The work presented here describes, in particular, the design and the experimental characterization of a component of the circuit that solves the Leader Election problem. This module, composed of an hybrid promoter and a gene, is activated in the non-leader cells after receiving the signal that a leader is present in the colony. The most important element, in this case, is the hybrid promoter, it has been realized in different versions, applying the heuristic rules stated in [22], and their activity has been experimentally tested. The objective of the experimental characterization was to test the response of the genetic circuit to the introduction, in the cellular environment, of particular molecules, inducers, that can be considered inputs of the system. The desired behaviour is similar to the one of a logic AND gate in which the exit, represented by the luminous signal produced by a fluorescent protein, is one only in presence of both inducers. The robustness and the stability of this behaviour have been tested by changing the concentration of the input signals and building dose response curves. From these data it is possible to conclude that the analysed constructs have an AND-like behaviour over a wide range of inducers’ concentrations, even if it is possible to identify many differences in the expression profiles of the different constructs. This variability accounts for the fact that the input and the output signals are continuous, and so their binary representation isn’t able to capture the complexity of the behaviour. The module of the circuit that has been considered in this analysis has a fundamental role in the realization of the intercellular communication system that is necessary for the cooperative behaviour to take place. For this reason, the second phase of the characterization has been focused on the analysis of the signal transmission. In particular, the interaction between this element and the one that is responsible for emitting the chemical signal has been tested. The desired behaviour is still similar to a logic AND, since, even in this case, the exit signal is determined by the hybrid promoter activity. The experimental results have demonstrated that the systems behave correctly, even if there is still a substantial variability between them. The dose response curves highlighted that stricter constrains on the inducers concentrations need to be imposed in order to obtain a clear separation between the two levels of expression. In the conclusive chapter the DNA sequences of the hybrid promoters are analysed, trying to identify the regulatory elements that are most important for the determination of the gene expression. Given the available data it wasn’t possible to draw definitive conclusions. In the end, few considerations on promoter engineering and complex circuits realization are presented. This section aims to briefly recall some of the problems outlined in the introduction and provide a few possible solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'obiettivo di questo lavoro è quello di analizzare la stabilità di uno spettro raggi X emesso da un tubo usurato per analisi cardiovascolari, in modo da verificare il suo comportamento. Successivamente questo tipo di analisi sarà effettuata su tubi CT. Per raggiungere questo scopo è stato assemblato un particolare set-up con un rivelatore al germanio criogenico in modo da avere la miglior risoluzione energetica possibile ed alcuni particolari collimatori così da ridurre il flusso fotonico per evitare effetti di pile-up. Il set-up è stato costruito in modo da avere il miglior allineamento possibile nel modo più veloce possibile, e con l'obiettivo di rendere l'intero sistema portabile. Il tubo usato è un SRM Philips tube per analisi cardiovascolari; questa scelta è stata fatta in modo da ridurre al minimo i fattori esterni (ottica elettromagnetica, emettitori) e concentrare l'attenzione solo sugli effetti, causati dalle varie esposizioni, sull'anodo (roughness e bending) e sul comportamento di essi durante il surriscaldamento e successivo raffreddamento del tubo. I risultati mostrano come durante un'esposizione alcuni fattori di usura del tubo possono influire in maniera sostanziale sullo spettro ottenuto e quindi alterare il risultato. Successivamente, nell'elaborato, mediante il software Philips di ricostruzione e simulazione dello spettro si è cercato di riprodurre, variando alcuni parametri, la differenza riscontrata sperimentalmente in modo da poter simulare l'instabilità e correggere i fattori che la causano. I risultati sono interessanti non solo per questo esperimento ma anche in ottica futura, per lo sviluppo di applicazioni come la spectral CT. Il passo successivo sarà quello di spostare l'attenzione su un CT tube e verificare se l'instabilità riscontrata in questo lavoro è persiste anche in una analisi più complessa come quella CT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral cyclic loaded structures in granular soils can lead to an accumulation of irreversible strains by changing their mechanical response (densification) and forming a closed convective cell in the upper layer of the bedding. In the present thesis the convective cell dimension, formation and grain migration inside this closed volume have been studied and presented in relation to structural stiffness and different loads. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Modelling large soil deformation turns out to be difficult, using mesh-based methods. Consequently, a mesh-free approach (DEM) was chosen in order to investigate the granular flow with the aim of extracting interesting micromechanical information. In both the numerical and experimental analyses the effect of different loading magnitudes and different dimensions of the vertical element were considered. The main results regarded the different development, shape and dimensions of the convection cell and the surface settlements. Moreover, the Discrete Element Method has proven to give satisfactory results in the modelling of large deformation phenomena such as the ratcheting convective cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glucaric acid (GLA) has been identified as a “top value-added chemical from biomass” that can be employed for many uses; for instance, it could be a precursor of adipic acid, a monomer of Nylon-6,6. GLA can be synthetized by the oxidation of glucose (GLU), passing through the intermediate gluconic acid (GLO). In recent years, a new process has been sought to obtain GLA in an economic and environmental sustainable way, in order to replace the current use of HNO3 as a stoichiometric oxidant, or electrocatalysis and biochemical synthesis, which show several disadvantages. Thereby, this work is focused on the study of catalysts based on gold nanoparticles supported on activated carbon for the oxidation reaction of GLU to GLA using O2 as an oxidant agent and NaOH as base. The sol-immobilization method leads us to obtain small and well dispersed nanoparticles, characterized by UV-Vis, XRD and TEM techniques. Repeating the reaction on different batches of catalyst, both the synthesis and the reaction were confirmed to be reproducible. The effect of the reaction time feeding GLO as reagent was studied: the results show that the conversion of GLO increases as the reaction time increases; however, the yields of GLA and others increase up to 1 hour, and then they remain constant. In order to obtain information on the catalytic mechanism at the atomistic level, a computational study based on density functional theory and atomistic modeling of the gold nano-catalyst were performed. Highly symmetric (icosahedral and cubo-octahedral) and distorted Au55 nanoparticles have been optimized along with Au(111) and Au(100) surfaces. Distorted structures were found to be more stable than symmetrical ones due to relativistic effects. On these various models the adsorptions of various species involved in the catalysis have been studied, including OH- species, GLU and GLO. The study carried out aims to provide a method for approaching to the study of nanoparticellary catalytic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I vantaggi dell’Industria 4.0 hanno stravolto il manufacturing. Ma cosa vuol dire "Industria 4.0"? Essa è la nuova frontiera del manufacturing, basata su princìpi che seguono i passi avanti dei sistemi IT e della tecnologia. Dunque, i suoi pilastri sono: integrazione, verticale e orizzontale, digitalizzazione e automazione. L’Industria 4.0 coinvolge molte aree della supply chain, dai flussi informativi alla logistica. In essa e nell’intralogistica, la priorità è sviluppare dei sistemi di material handling flessibili, automatizzati e con alta prontezza di risposta. Il modello ideale è autonomo, in cui i veicoli fanno parte di una flotta le cui decisioni sono rese decentralizzate grazie all'alta connettività e alla loro abilità di collezionare dati e scambiarli rapidamente nel cloud aziendale.Tutto ciò non sarebbe raggiungibile se ci si affidasse a un comune sistema di trasporto AGV, troppo rigido e centralizzato. La tesi si focalizza su un tipo di material handlers più flessibile e intelligente: gli Autonomous Mobile Robots. Grazie alla loro intelligenza artificiale e alla digitalizzazione degli scambi di informazioni, interagiscono con l’ambiente per evitare ostacoli e calcolare il percorso ottimale. Gli scenari dell’ambiente lavorativo determinano perdite di tempo nel tragitto dei robot e sono queste che dovremo studiare. Nella tesi, i vantaggi apportati dagli AMR, come la loro decentralizzazione delle decisioni, saranno introdotti mediante una literature review e poi l’attenzione verterà sull’analisi di ogni scenario di lavoro. Fondamentali sono state le esperienze nel Logistics 4.0 Lab di NTNU, per ricreare fisicamente alcuni scenari. Inoltre, il software AnyLogic sarà usato per riprodurre e simulare tutti gli scenari rilevanti. I risultati delle simulazioni verranno infine usati per creare un modello che associ ad ogni scenario rilevante una perdita di tempo, attraverso una funzione. Per questo saranno usati software di data analysis come Minitab e MatLab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benzoquinone was found as an effective co-catalyst in the ruthenium/NaOEt-catalyzed Guerbet reaction. The co-catalyst behavior has therefore been investigated through experimental and computational methods. The reaction products distribution shows that the reaction speed is improved by the benzoquinone supplement since the beginning of the process, having a minimal effect on the selectivity toward alcoholic species. DFT calculations were performed to investigate two hypotheses for the kinetic effects: i) a hydrogen storage mechanism or ii) a basic co-catalysis of 4-hydroxiphenolate. The most promising results were found for the latter hypothesis, where a new mixed mechanism for the aldol condensation step of the Guerbet process involves the hydroquinone (i.e. the reduced form of benzoquinone) as proton source instead of ethanol. This mechanism was found to be energetically more favorable than an aldol condensation in absence of additive, suggesting that the hydroquinone derived from benzoquinone could be the key species affecting the kinetics of the overall process. To verify this theoretical hypothesis, new phenol derivatives were tested as additives in the Guerbet reaction. The outcomes confirmed that an aromatic acid (stronger than ethanol) could improve the reaction kinetics. Lastly, theoretical products distributions were simulated and compared to the experimental one, using the DFT computations to build the kinetic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il fenomeno dello scattering diffuso è stato oggetto di numerosi studi nell’arco degli ultimi anni, questo grazie alla sua rilevanza nell’ambito della propagazione elettromagnetica così come in molti altri campi di applicazione (remote sensing, ottica, fisica, etc.), ma la compresione completa di questo effetto è lungi dall’essere raggiunta. Infatti la complessità nello studio e nella caratterizzazione della diffusione deriva dalla miriade di casistiche ed effetti che si possono incontrare in un ambiente di propagazione reale, lasciando intuire la necessità di trattarne probabilisticamente il relativo contributo. Da qui nasce l’esigenza di avere applicazioni efficienti dal punto di vista ingegneristico che coniughino la definizione rigorosa del fenomeno e la conseguente semplificazione per fini pratici. In tale visione possiamo descrivere lo scattering diffuso come la sovrapposizione di tutti quegli effetti che si scostano dalle classiche leggi dell’ottica geometrica (riflessione, rifrazione e diffrazione) che generano contributi del campo anche in punti dello spazio e direzioni in cui teoricamente, per oggetti lisci ed omogenei, non dovrebbe esserci alcun apporto. Dunque l’effetto principale, nel caso di ambiente di propagazione reale, è la diversa distribuzione spaziale del campo rispetto al caso teorico di superficie liscia ed omogenea in congiunzione ad effetti di depolarizzazione e redistribuzione di energia nel bilancio di potenza. Perciò la complessità del fenomeno è evidente e l’obiettivo di tale elaborato è di proporre nuovi risultati che permettano di meglio descrivere lo scattering diffuso ed individuare altresì le tematiche sulle quali concentrare l’attenzione nei lavori futuri. In principio è stato quindi effettuato uno studio bibliografico così da identificare i modelli e le teorie esistenti individuando i punti sui quali riflettere maggiormente; nel contempo si sono analizzate le metodologie di caratterizzazione della permittività elettrica complessa dei materiali, questo per valutare la possibilità di ricavare i parametri da utilizzare nelle simulazioni utilizzando il medesimo setup di misura ideato per lo studio della diffusione. Successivamente si è realizzato un setup di simulazione grazie ad un software di calcolo elettromagnetico (basato sul metodo delle differenze finite nel dominio del tempo) grazie al quale è stato possibile analizzare la dispersione tridimensionale dovuta alle irregolarità del materiale. Infine è stata condotta una campagna di misure in camera anecoica con un banco sperimentale realizzato ad-hoc per effettuare una caratterizzazione del fenomeno di scattering in banda larga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.