6 resultados para Simplified and advanced calculation methods
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.
Resumo:
The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.
Resumo:
This thesis focuses on advanced reconstruction methods and Dual Energy (DE) Computed Tomography (CT) applications for proton therapy, aiming at improving patient positioning and investigating approaches to deal with metal artifacts. To tackle the first goal, an algorithm for post-processing input DE images has been developed. The outputs are tumor- and bone-canceled images, which help in recognising structures in patient body. We proved that positioning error is substantially reduced using contrast enhanced images, thus suggesting the potential of such application. If positioning plays a key role in the delivery, even more important is the quality of planning CT. For that, modern CT scanners offer possibility to tackle challenging cases, like treatment of tumors close to metal implants. Possible approaches for dealing with artifacts introduced by such rods have been investigated experimentally at Paul Scherrer Institut (Switzerland), simulating several treatment plans on an anthropomorphic phantom. In particular, we examined the cases in which none, manual or Iterative Metal Artifact Reduction (iMAR) algorithm were used to correct the artifacts, using both Filtered Back Projection and Sinogram Affirmed Iterative Reconstruction as image reconstruction techniques. Moreover, direct stopping power calculation from DE images with iMAR has also been considered as alternative approach. Delivered dose measured with Gafchromic EBT3 films was compared with the one calculated in Treatment Planning System. Residual positioning errors, daily machine dependent uncertainties and film quenching have been taken into account in the analyses. Although plans with multiple fields seemed more robust than single field, results showed in general better agreement between prescribed and delivered dose when using iMAR, especially if combined with DE approach. Thus, we proved the potential of these advanced algorithms in improving dosimetry for plans in presence of metal implants.
Resumo:
In the last few decades, offshore field has grown fast especially after the notable development of technologies, explorations of oil and gas in deep water and the high concern of offshore companies in renewable energy mainly Wind Energy. Fatigue damage was noticed as one of the main problems causing failure of offshore structures. The purpose of this research is to focus on the evaluation of Stress Concentration Factor and its influence on Fatigue Life for 2 tubular KT-Joints in offshore Jacket structure using different calculation methods. The work is done by using analytical calculations, mainly Efthymiou’s formulations, and numerical solutions, FEM analysis, using ABAQUS software. As for the analytical formulations, the calculations were done according to the geometrical parameters of each method using excel sheets. As for the numerical model, 2 different types of tubular KT-Joints are present where for each model 5 shell element type, 3 solid element type and 3 solid-with-weld element type models were built on ABAQUS. Meshing was assigned according to International Institute of Welding (IIW) recommendations, 5 types of mesh element, to evaluate the Hot-spot stresses. 23 different types of unitary loading conditions were assigned, 9 axial, 7 in-plane bending moment and 7 out-plane bending moment loads. The extraction of Hot-spot stresses and the evaluation of the Stress Concentration Factor were done using PYTHON scripting and MATLAB. Then, the fatigue damage evaluation for a critical KT tubular joint based on Simplified Fatigue Damage Rule and Local Approaches (Strain Damage Parameter and Stress Damage Parameter) methods were calculated according to the maximum Stress Concentration Factor conducted from DNV and FEA methods. In conclusion, this research helped us to compare different results of Stress Concentration Factor and Fatigue Life using different methods and provided us with a general overview about what to study next in the future.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.