4 resultados para Silver nanoparticles
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Upgrade of biomass to valuable chemicals is a central topic in modern research due to the high availability and low price of this feedstock. For the difficulties in biomass treatment, different pathways are still under investigation. A promising way is in the photodegradation, because it can lead to greener transformation processes with the use of solar light as a renewable resource. The aim of my work was the research of a photocatalyst for the hydrolysis of cellobiose under visible irradiation. Cellobiose was selected because it is a model molecule for biomass depolymerisation studies. Different titania crystalline structures were studied to find the most active phase. Furthermore, to enhance the absorption of this semiconductor in the visible range, noble metal nanoparticles were immobilized on titania. Gold and silver were chosen because they present a Surface Plasmon Resonance band and they are active metals in several photocatalytic reactions. The immobilized catalysts were synthesized following different methods to optimize the synthetic steps and to achieve better performances. For the same purpose the alloying effect between gold and silver nanoparticles was examined.
Resumo:
Nanomedicine is a science based on the preparation of nanosystems for biomedical application. The drugs can be entrapped inside the nanocarriers to improve the drug concentration in the diseased issue through a drug delivery approach; polimeric materials as PLGA-b-PEG has been revealed good properties for this purpose. To improve the nanosystem efficiency it is possible to bind a targeting agent on the carrier surface. In this thesis work silver nanoparticles or drugs as Temsirolimus and Alisertib have been entrapped in PLGA-b-PEG carriers. Chlorotoxin has been linked on the carrier surface as a specific targeting agent for brain tumors. Citotoxicity in vitro of the nanosystems on Glioblastoma cells has been studied.
Resumo:
This study led to the development of new synthesis process to obtain "nano delivery" system like aquasome, suitable to enhance the affinity between dyes and human hair for cosmetic formulation. These systems has been based on silver nanoparticles stabilized by different kind of polymers as PVP or celluloses. The research has been conducted in two steps: the first involved the study and optimization of the nano delivery system synthesis conditions as concentrations, pH and temperature. The second concerned the preparation of a stable, low hazard and with antibacterial and antifungal properties formulation containing the aquasome and a colorant already used in cosmetics (i.e. Basic Red 51) for hair dyeing application.
Resumo:
Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.