2 resultados para Sensorless vector control
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.
Resumo:
The increasing interest in the decarbonization process led to a rapidly growing trend of electrification strategies in the automotive industry. In particular, OEMs are pushing towards the development and production of efficient electric vehicles. Moreover, research on electric motors and their control are exploding in popularity. The increase of computational power in embedded control hardware is allowing the development of new control algorithm, such as sensorless control strategy. Such control strategy allows the reduction of the number of sensors, which implies reduced costs and increased system reliability. The thesis objective is to realize a sensorless control for high-performance automotive motors. Several algorithms for rotor angle observers are implemented in the MATLAB and Simulink environment, with emphasis on the Kalman observer. One of the Kalman algorithms already available in the literature has been selected, implemented and benchmarked, with emphasis on its comparison with the Sliding Mode observer. Different models characterized by increasing levels of complexity are simulated. A simplified synchronous motor with ”constant parameters”, controlled by an ideal inverter is first analyzed; followed by a complete model defined by real motor maps, and controlled by a switching inverter. Finally, it was possible to test the developed algorithm on a real electric motor mounted on a test bench. A wide range of different electric motors have been simulated, which led to an exhaustive review of the sensorless control algorithm. The final results underline the capability of the Kalman observer to effectively control the motor on a real test bench.