3 resultados para Semigroup Compactifications
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, we shall work in the framework of type IIB Calabi-Yau flux compactifications and present a detailed review of moduli stabilisation studying in particular the phenomenological implications of the LARGE-volume scenario (LVS). All the physical relevant quantities such as moduli masses and soft-terms, are computed and compared to the phenomenological constraints that today guide the research. The structure of this thesis is the following. The first chapter introduces the reader to the fundamental concepts that are essentially supersymmetry-breaking, supergravity and string moduli, which represent the basic framework of our discussion. In the second chapter we focus our attention on the subject of moduli stabilisation. Starting from the structure of the supergravity scalar potential, we point out the main features of moduli dynamics, we analyse the KKLT and LARGE-volume scenario and we compute moduli masses and couplings to photons which play an important role in the early-universe evolution since they are strictly related to the decay rate of moduli particles. The third chapter is then dedicated to the calculation of soft-terms, which arise dynamically from gravitational interactions when moduli acquire a non-zero vacuum expectation value (VeV). In the last chapter, finally, we summarize and discuss our results, underling their phenomenological aspects. Moreover, in the last section we analyse the implications of the outcomes for standard cosmology, with particular interest in the cosmological moduli problem.
Resumo:
The thesis presents a probabilistic approach to the theory of semigroups of operators, with particular attention to the Markov and Feller semigroups. The first goal of this work is the proof of the fundamental Feynman-Kac formula, which gives the solution of certain parabolic Cauchy problems, in terms of the expected value of the initial condition computed at the associated stochastic diffusion processes. The second target is the characterization of the principal eigenvalue of the generator of a semigroup with Markov transition probability function and of second order elliptic operators with real coefficients not necessarily self-adjoint. The thesis is divided into three chapters. In the first chapter we study the Brownian motion and some of its main properties, the stochastic processes, the stochastic integral and the Itô formula in order to finally arrive, in the last section, at the proof of the Feynman-Kac formula. The second chapter is devoted to the probabilistic approach to the semigroups theory and it is here that we introduce Markov and Feller semigroups. Special emphasis is given to the Feller semigroup associated with the Brownian motion. The third and last chapter is divided into two sections. In the first one we present the abstract characterization of the principal eigenvalue of the infinitesimal generator of a semigroup of operators acting on continuous functions over a compact metric space. In the second section this approach is used to study the principal eigenvalue of elliptic partial differential operators with real coefficients. At the end, in the appendix, we gather some of the technical results used in the thesis in more details. Appendix A is devoted to the Sion minimax theorem, while in appendix B we prove the Chernoff product formula for not necessarily self-adjoint operators.
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.