3 resultados para Semantic Search

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questa tesi riguarda lo sviluppo di un'applicazione che sfrutta le tecnologie del Web Semantico e del Text Mining. L'applicazione rappresenta l'estensione di un lavoro relativo ad una tesi precedente, aggiungendo ad esso la funzionalità di ricerca semantica. Tale funzionalità permette il recupero di informazioni che con il metodo di ricerca normale non verrebbero considerate. Per raggiungere questo risultato si utilizza WordNet, un database semantico-lessicale, e una libreria per la Latent Semantic Analysis, una tecnica del Text Mining.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.