25 resultados para Semantic Publishing, Linked Data, Bibliometrics, Informetrics, Data Retrieval, Citations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Nel presente lavoro si introduce un nuovo indice per la valutazione dei prodotti della ricerca: l'indice di multidisciplinarieta`. Questa nuova metrica puo` essere un interessante parametro di valutazione: il panorama degli studi multidisciplinari e` vasto ed eterogeneo, ed all'interno di questo sono richieste necessarie competenze trasversali. Le attuali metriche adottate nella valutazione di un accademico, di un journal, o di una conferenza non tengono conto di queste situazioni intermedie, e limitano la loro valutazione dell'impatto al semplice conteggio delle citazioni ricevute. Il risultato di tale valutazione consiste in un valore dell'impatto della ricerca senza una connotazione della direzione e della rilevanza di questa nel contesto delle altre discipline. L'indice di multidisciplinarieta` proposto si integrerebbe allora all'interno dell'attuale panorama delle metriche di valutazione della ricerca, offrendo -accanto ad una quantificazione dell'impatto- una quantificazione della varieta` dei contesti disciplinari nei quali si inserisce.
Resumo:
Il presente lavoro si occupa di fare una rassegna esaustiva di alcuni Linked Open Dataset nel contesto delle pubblicazioni scientifiche, cercando di inquadrare la loro eterogeneità ed identificando i principali pregi e difetti di ciascuno. Inoltre, descriviamo il nostro prototipo GReAT (Giorgi's Redundant Authors Tool), creato per il corretto riconoscimento e disambiguazione degli autori.
Resumo:
La capacità di estrarre entità da testi, collegarle tra loro ed eliminare possibili ambiguità tra di esse è uno degli obiettivi del Web Semantico. Chiamato anche Web 3.0, esso presenta numerose innovazioni volte ad arricchire il Web con dati strutturati comprensibili sia dagli umani che dai calcolatori. Nel reperimento di questi temini e nella definizione delle entities è di fondamentale importanza la loro univocità. Il nostro orizzonte di lavoro è quello delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. L’insieme di informazioni di partenza, per sua natura, vede la presenza di ambiguità. Attenendoci il più possibile alla sua semantica, abbiamo studiato questi dati ed abbiamo risolto le collisioni presenti sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità e le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati, rappresentati tramite un data cluster. In questo docu delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. Partendo da un insieme di informazioni che, per sua natura, vede la presenza di ambiguità, lo abbiamo studiato attenendoci il più possibile alla sua semantica, ed abbiamo risolto le collisioni che accadevano sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità, le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati tramite la costruzione di un data cluster.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
L'Open Data, letteralmente “dati aperti”, è la corrente di pensiero (e il relativo “movimento”) che cerca di rispondere all'esigenza di poter disporre di dati legalmente “aperti”, ovvero liberamente re-usabili da parte del fruitore, per qualsiasi scopo. L’obiettivo dell’Open Data può essere raggiunto per legge, come negli USA dove l’informazione generata dal settore pubblico federale è in pubblico dominio, oppure per scelta dei detentori dei diritti, tramite opportune licenze. Per motivare la necessità di avere dei dati in formato aperto, possiamo usare una comparazione del tipo: l'Open Data sta al Linked Data, come la rete Internet sta al Web. L'Open Data, quindi, è l’infrastruttura (o la “piattaforma”) di cui il Linked Data ha bisogno per poter creare la rete di inferenze tra i vari dati sparsi nel Web. Il Linked Data, in altre parole, è una tecnologia ormai abbastanza matura e con grandi potenzialità, ma ha bisogno di grandi masse di dati tra loro collegati, ossia “linkati”, per diventare concretamente utile. Questo, in parte, è già stato ottenuto ed è in corso di miglioramento, grazie a progetti come DBpedia o FreeBase. In parallelo ai contributi delle community online, un altro tassello importante – una sorta di “bulk upload” molto prezioso – potrebbe essere dato dalla disponibilità di grosse masse di dati pubblici, idealmente anche già linkati dalle istituzioni stesse o comunque messi a disposizione in modo strutturato – che aiutino a raggiungere una “massa” di Linked Data. A partire dal substrato, rappresentato dalla disponibilità di fatto dei dati e dalla loro piena riutilizzabilità (in modo legale), il Linked Data può offrire una potente rappresentazione degli stessi, in termini di relazioni (collegamenti): in questo senso, Linked Data ed Open Data convergono e raggiungono la loro piena realizzazione nell’approccio Linked Open Data. L’obiettivo di questa tesi è quello di approfondire ed esporre le basi sul funzionamento dei Linked Open Data e gli ambiti in cui vengono utilizzati.
Resumo:
Con questa dissertazione di tesi miro ad illustrare i risultati della mia ricerca nel campo del Semantic Publishing, consistenti nello sviluppo di un insieme di metodologie, strumenti e prototipi, uniti allo studio di un caso d‟uso concreto, finalizzati all‟applicazione ed alla focalizzazione di Lenti Semantiche (Semantic Lenses).
Resumo:
Il progetto QRPlaces - Semantic Events, oggetto di questo lavoro, focalizza l’attenzione sull’analisi, la progettazione e l’implementazione di un sistema che sia in grado di modellare i dati, relativi a diversi eventi facenti parte del patrimonio turistico - culturale della Regione Emilia Romagna 1, rendendo evidenti i vantaggi associati ad una rappresentazione formale incentrata sulla Semantica. I dati turistico - culturali sono intesi in questo ambito sia come una rappresentazione di “qualcosa che accade in un certo punto ad un certo momento” (come ad esempio un concerto, una sagra, una raccolta fondi, una rappresentazione teatrale e quant’altro) sia come tradizioni e costumi che costituiscono il patrimonio turistico-culturale e a cui si fa spesso riferimento con il nome di “Cultural Heritage”. Essi hanno la caratteristica intrinseca di richiedere una conoscenza completa di diverse informa- zioni correlata, come informazioni di geo localizzazione relative al luogo fisico che ospita l’evento, dati biografici riferiti all’autore o al soggetto che è presente nell’evento piuttosto che riferirsi ad informazioni che descrivono nel dettaglio tutti gli oggetti, come teatri, cinema, compagnie teatrali che caratterizzano l’evento stesso. Una corretta rappresentazione della conoscenza ad essi legata richiede, pertanto, una modellazione in cui i dati possano essere interconnessi, rivelando un valore informativo che altrimenti resterebbe nascosto. Il lavoro svolto ha avuto lo scopo di realizzare un dataset rispondente alle caratteristiche tipiche del Semantic Web grazie al quale è stato possibile potenziare il circuito di comunicazione e informazione turistica QRPlaces 2. Nello specifico, attraverso la conversione ontologica di dati di vario genere relativi ad eventi dislocati nel territorio, e sfruttando i principi e le tecnologie del Linked Data, si è cercato di ottenere un modello informativo quanto più possibile correlato e arricchito da dati esterni. L’obiettivo finale è stato quello di ottenere una sorgente informativa di dati interconnessi non solo tra loro ma anche con quelli presenti in sorgenti esterne, dando vita ad un percorso di collegamenti in grado di evidenziare una ricchezza informativa utilizzabile per la creazione di valore aggiunto che altrimenti non sarebbe possibile ottenere. Questo aspetto è stato realizzato attraverso un’in- terfaccia di MashUp che utilizza come sorgente il dataset creato e tutti i collegamenti con la rete del Linked Data, in grado di reperire informazioni aggiuntive multi dominio.
Resumo:
Tesi riguardante le differenze tra Semantic Web e Web Tradizionale
Resumo:
Questo lavoro di tesi si concentra sulle estensioni apportate a BEX (Bibliographic Explorer), una web app finalizzata alla navigazione di pubblicazioni scientifiche attraverso le loro citazioni. Il settore in cui si colloca è il Semantic Publishing, un nuovo ambito di ricerca derivato dall'applicazione delle tecnologie del Semantic Web allo Scholarly Publishing, che ha come scopo la pubblicazione di articoli accademici a cui vengono associati metadati semantici. BEX nasce all'interno del Semantic Lancet Project del Dipartimento di Informatica dell'Università di Bologna, il cui obiettivo è costruire un Linked Open Dataset di pubblicazioni accademiche, il Semantic Lancet Triplestore (SLT), e fornire strumenti per la navigazione ad alto livello e l'uso approfondito dei dati in esso contenuti. Gli scholarly Linked Open Data elaborati da BEX sono insiemi di triple RDF conformi alle ontologie SPAR. Originariamente BEX ha come backend il dataset SLT che contiene metadati relativi alle pubblicazioni del Journal Of Web Semantics di Elsevier. BEX offre viste avanzate tramite un'interfaccia interattiva e una buona user-experience. L'utente di BEX è principalmente il ricercatore universitario, che per compiere le sue attività quotidiane fa largo uso delle Digital Library (DL) e dei servizi che esse offrono. Dato il fermento dei ricercatori nel campo del Semantic Publishing e la veloce diffusione della pubblicazione di scholarly Linked Open Data è ragionevole pensare di ampliare e mantenere un progetto che possa provvedere al sense making di dati altrimenti interrogabili solo in modo diretto con queries SPARQL. Le principali integrazioni a BEX sono state fatte in termini di scalabilità e flessibilità: si è implementata la paginazione dei risultati di ricerca, l'indipendenza da SLT per poter gestire datasets diversi per struttura e volume, e la creazione di viste author centric tramite aggregazione di dati e comparazione tra autori.
Resumo:
La produzione ontologica è un processo fondamentale per la crescita del Web Semantico in quanto le ontologie rappresentano i vocabolari formali con cui strutturare il Web of Data. Le notazioni grafiche ontologiche costituiscono il mezzo ideale per progettare ontologie OWL sensate e ben strutturate. Tuttavia la successiva fase di generazione ontologica richiede all'utente un fastidioso cambio sia di prospettiva sia di strumentazione. Questa tesi propone dunque GraMOS, Graffoo to Manchester OWL Syntax, un motore di trasformazione da modelli Graffoo a ontologie formali in grado di fondere le due fasi di progettazione e generazione ontologica.
Resumo:
Lo scopo del progetto Bird-A è di mettere a disposizione uno strumento basato su ontologie per progettare un'interfaccia web collaborativa di creazione, visualizzazione, modifica e cancellazione di dati RDF e di fornirne una prima implementazione funzionante. La visione che sta muovendo la comunità del web semantico negli ultimi anni è quella di creare un Web basato su dati strutturati tra loro collegati, più che su documenti. Questo modello di architettura prende il nome di Linked Data ed è basata sulla possibilità di considerare cose, concetti, persone come risorse identificabili tramite URI e di poter fornire informazioni e descrivere collegamenti tra queste risorse attraverso l'uso di formati standard come RDF. Ciò che ha però frenato la diffusione di questi dati strutturati ed interconnessi sono stati gli alti requisiti di competenze tecniche necessarie sia alla loro creazione che alla loro fruizione. Il progetto Bird-A si prefigge di semplificare la creazione e la fruizione di dati RDF, favorendone la condivisione e la diffusione anche fra persone non dotate di conoscenze tecniche specifiche.
Resumo:
Obiettivo di questa tesi dal titolo “Analisi di tecniche per l’estrazione di informazioni da documenti testuali e non strutturati” è quello di mostrare tecniche e metodologie informatiche che permettano di ricavare informazioni e conoscenza da dati in formato testuale. Gli argomenti trattati includono l'analisi di software per l'estrazione di informazioni, il web semantico, l'importanza dei dati e in particolare i Big Data, Open Data e Linked Data. Si parlerà inoltre di data mining e text mining.
Resumo:
Viene presentato l’approccio Linked Data, che si serve di descrizioni scritte in linguaggio RDF per rendere espliciti ai calcolatori i legami semantici esistenti tra le risorse che popolano il Web. Si descrive quindi il progetto DBpedia, che si propone di riorganizzare le informazioni disponibili su Wikipedia in formato Linked Data, così da renderle più facilmente consultabili dall’utente e da rendere possibile l’esecuzione di query complesse. Si discute quindi della sfida riguardante l’integrazione di contenuti multimediali (immagini, file audio, video…) su DBpedia e si analizzano tre progetti rivolti in tal senso: Multipedia, DBpedia Commons e IMGpedia. Vengono infine sottolineate l’importanza e le potenzialità legate alla creazione di un Web Semantico.
Resumo:
Lavoro svolto per la creazione di una rete citazionale a partire da articoli scientifici codificati in XML JATS. Viene effettuata un'introduzione sul semantic publishing, le ontologie di riferimento e i principali dataset su pubblicazioni scientifiche. Infine viene presentato il prototipo CiNeX che si occupa di estrarre da un dataset in XML JATS un grafo RDF utilizzando l'ontologia SPAR.