4 resultados para Self-Regulated Strategy Development
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
One of the most serious problems of the modern medicine is the growing emergence of antibiotic resistance among pathogenic bacteria. In this circumstance, different and innovative approaches for treating infections caused by multidrug-resistant bacteria are imperatively required. Bacteriophage Therapy is one among the fascinating approaches to be taken into account. This consists of the use of bacteriophages, viruses that infect bacteria, in order to defeat specific bacterial pathogens. Phage therapy is not an innovative idea, indeed, it was widely used around the world in the 1930s and 1940s, in order to treat various infection diseases, and it is still used in Eastern Europe and the former Soviet Union. Nevertheless, Western scientists mostly lost interest in further use and study of phage therapy and abandoned it after the discovery and the spread of antibiotics. The advancement of scientific knowledge of the last years, together with the encouraging results from recent animal studies using phages to treat bacterial infections, and above all the urgent need for novel and effective antimicrobials, have given a prompt for additional rigorous researches in this field. In particular, in the laboratory of synthetic biology of the department of Life Sciences at the University of Warwick, a novel approach was adopted, starting from the original concept of phage therapy, in order to study a concrete alternative to antibiotics. The innovative idea of the project consists in the development of experimental methodologies, which allow to engineer a programmable synthetic phage system using a combination of directed evolution, automation and microfluidics. The main aim is to make “the therapeutics of tomorrow individualized, specific, and self-regulated” (Jaramillo, 2015). In this context, one of the most important key points is the Bacteriophage Quantification. Therefore, in this research work, a mathematical model describing complex dynamics occurring in biological systems involving continuous growth of bacteriophages, modulated by the performance of the host organisms, was implemented as algorithms into a working software using MATLAB. The developed program is able to predict different unknown concentrations of phages much faster than the classical overnight Plaque Assay. What is more, it gives a meaning and an explanation to the obtained data, making inference about the parameter set of the model, that are representative of the bacteriophage-host interaction.
Resumo:
Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.
Resumo:
While the use of distributed intelligence has been incrementally spreading in the design of a great number of intelligent systems, the field of Artificial Intelligence in Real Time Strategy games has remained mostly a centralized environment. Despite turn-based games have attained AIs of world-class level, the fast paced nature of RTS games has proven to be a significant obstacle to the quality of its AIs. Chapter 1 introduces RTS games describing their characteristics, mechanics and elements. Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions abstraction, analysing the possibilities given by self-computing properties. In Chapter 3 the current state of AI development in RTS games is analyzed highlighting the struggles of the gaming industry to produce valuable. The focus on improving multiplayer experience has impacted gravely on the quality of the AIs thus leaving them with serious flaws that impair their ability to challenge and entertain players. Chapter 4 explores different aspects of AI development for RTS, evaluating the potential strengths and weaknesses of an agent-based approach and analysing which aspects can benefit the most against centralized AIs. Chapter 5 describes a generic agent-based framework for RTS games where every game entity becomes an agent, each of which having its own knowledge and set of goals. Different aspects of the game, like economy, exploration and warfare are also analysed, and some agent-based solutions are outlined. The possible exploitation of self-computing properties to efficiently organize the agents activity is then inspected. Chapter 6 presents the design and implementation of an AI for an existing Open Source game in beta development stage: 0 a.d., an historical RTS game on ancient warfare which features a modern graphical engine and evolved mechanics. The entities in the conceptual framework are implemented in a new agent-based platform seamlessly nested inside the existing game engine, called ABot, widely described in Chapters 7, 8 and 9. Chapter 10 and 11 include the design and realization of a new agent based language useful for defining behavioural modules for the agents in ABot, paving the way for a wider spectrum of contributors. Chapter 12 concludes the work analysing the outcome of tests meant to evaluate strategies, realism and pure performance, finally drawing conclusions and future works in Chapter 13.
Resumo:
Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.