2 resultados para Second order cone programming
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this thesis, we perform a next-to-leading order calculation of the impact of primordial magnetic fields (PMF) into the evolution of scalar cosmological perturbations and the cosmic microwave background (CMB) anisotropy. Magnetic fields are everywhere in the Universe at all scales probed so far, but their origin is still under debate. The current standard picture is that they originate from the amplification of initial seed fields, which could have been generated as PMFs in the early Universe. The most robust way to test their presence and constrain their features is to study how they impact on key cosmological observables, in particular the CMB anisotropies. The standard way to model a PMF is to consider its contribution (quadratic in the magnetic field) at the same footing of first order perturbations, under the assumptions of ideal magneto-hydrodynamics and compensated initial conditions. In the perspectives of ever increasing precision of CMB anisotropies measurements and of possible uncounted non-linear effects, in this thesis we study effects which go beyond the standard assumptions. We study the impact of PMFs on cosmological perturbations and CMB anisotropies with adiabatic initial conditions, the effect of Alfvén waves on the speed of sound of perturbations and possible non-linear behavior of baryon overdensity for PMFs with a blue spectral index, by modifying and improving the publicly available Einstein-Boltzmann code SONG, which has been written in order to take into account all second-order contributions in cosmological perturbation theory. One of the objectives of this thesis is to set the basis to verify by an independent fully numerical analysis the possibility to affect recombination and the Hubble constant.
Resumo:
In the recent years, autonomous aerial vehicles gained large popularity in a variety of applications in the field of automation. To accomplish various and challenging tasks the capability of generating trajectories has assumed a key role. As higher performances are sought, traditional, flatness-based trajectory generation schemes present their limitations. In these approaches the highly nonlinear dynamics of the quadrotor is, indeed, neglected. Therefore, strategies based on optimal control principles turn out to be beneficial, since in the trajectory generation process they allow the control unit to best exploit the actual dynamics, and enable the drone to perform quite aggressive maneuvers. This dissertation is then concerned with the development of an optimal control technique to generate trajectories for autonomous drones. The algorithm adopted to this end is a second-order iterative method working directly in continuous-time, which, under proper initialization, guarantees quadratic convergence to a locally optimal trajectory. At each iteration a quadratic approximation of the cost functional is minimized and a decreasing direction is then obtained as a linear-affine control law, after solving a differential Riccati equation. The algorithm has been implemented and its effectiveness has been tested on the vectored-thrust dynamical model of a quadrotor in a realistic simulative setup.