2 resultados para Seasonal variation of thermal structure a different places Mixed layer of topography, Thermal anomaly, Internal waves"

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatio-temporal variations in diversity and abundance of deep-sea macrofaunal assemblages (excluding meiofaunal taxa, as Nematoda, Copepoda and Ostracoda) from the Blanes Canyon (BC) and adjacent open slope are described. The Catalan Sea basin is characterized by the presence of numerous submarine canyons, which are globally acknowledged as biodiversity hot-spots, due to their disturbance regime and incremented conveying of organic matter. This area is subjected to local deep-sea fisheries activities, and to recurrent cold water cascading events from the shelf. The upper canyon (~900 m), middle slope (~1200 m) and lower slope (~1500 m) habitats were investigated during three different months (October 2008, May 2009 and September 2009). A total of 624 specimens belonging to 16 different taxa were found into 67 analyzed samples, which had been collected from the two study areas. Of these, Polychaeta, Mollusca and Crustacea were always the most abundant groups. As expected, the patterns of species diversity and evenness were different in time and space. Both in BC and open slope, taxa diversity and abundance are higher in the shallowest depth and lowest at -1500 m depth. This is probably due to different trophic regimes at these depths. The abundance of filter-feeders is higher inside BC than in the adjacent open slope, which is also related with an increment of predator polychaetes. Surface deposit-feeders are more abundant in the open slope than in BC, along with a decrement of filter-feeders and their predators. Probably these differences are due to higher quantities of suspended organic matter reaching the canyon. The multivariate analyses conducted on major taxa point out major differences effective taxa richness between depths and stations. In September 2009 the analyzed communities double their abundances, with a corresponding increase in richness of taxa. This could be related to a mobilizing event, like the release of accumulated food-supply in a nepheloid layer associated to the arrival of autumn. The highest abundance in BC is detected in the shallowest depth and in late summer (September), probably due to higher food availability caused by stronger flood events coming from Tordera River. The effects of such events seemed to involve adjacent open slope too. The nMDS conducted on major taxa abundance shows a slight temporal difference between the three campaigns samples, with a clear clustering between samples of Sept 09. All depth and all months were dominated by Polychaeta, which have been identified to family level and submitted to further analysis. Family richness have clearly minimum at the -1200 m depth of BC, highlighting the presence of a general impact affecting the populations in the middle slope. Three different matrices have been created, each with a different taxonomic level (All Taxa “AT”, Phylum Level “PL” and Polychaeta Families “PF”). Multivariate analysis (MDS, SIMPER) conducted on PL matrix showed a clear spatial differences between stations (BC and open slope) and depths. MDSs conducted on other two matrices (AT and PF) showed similar patterns, but different from PL analysis. A 2 nd stage analysis have been conducted to understand differences between different taxonomic levels, and PL level has been chosen as the most representative of variation. The faunal differences observed were explained by depth, station and season. All work has been accomplished in the Centre d’estudis avançats de Blanes (CEAB-CSIC), within the framework of Spanish PROMETEO project "Estudio Integrado de Cañones y Taludes PROfundos del MEdiTErráneo Occidental: un hábitat esencial", Ref. CTM2007-66316-C02- 01/MAR.