2 resultados para Score of behavior
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The seismic behaviour of one-storey asymmetric structures has been studied since 1970s by a number of researches studies which identified the coupled nature of the translational-to-torsional response of those class of systems leading to severe displacement magnifications at the perimeter frames and therefore to significant increase of local peak seismic demand to the structural elements with respect to those of equivalent not-eccentric systems (Kan and Chopra 1987). These studies identified the fundamental parameters (such as the fundamental period TL normalized eccentricity e and the torsional-to-lateral frequency ratio Ωϑ) governing the torsional behavior of in-plan asymmetric structures and trends of behavior. It has been clearly recognized that asymmetric structures characterized by Ωϑ >1, referred to as torsionally-stiff systems, behave quite different form structures with Ωϑ <1, referred to as torsionally-flexible systems. Previous research works by some of the authors proposed a simple closed-form estimation of the maximum torsional response of one-storey elastic systems (Trombetti et al. 2005 and Palermo et al. 2010) leading to the so called “Alpha-method” for the evaluation of the displacement magnification factors at the corner sides. The present paper provides an upgrade of the “Alpha Method” removing the assumption of linear elastic response of the system. The main objective is to evaluate how the excursion of the structural elements in the inelastic field (due to the reaching of yield strength) affects the displacement demand of one-storey in-plan asymmetric structures. The system proposed by Chopra and Goel in 2007, which is claimed to be able to capture the main features of the non-linear response of in-plan asymmetric system, is used to perform a large parametric analysis varying all the fundamental parameters of the system, including the inelastic demand by varying the force reduction factor from 2 to 5. Magnification factors for different force reduction factor are proposed and comparisons with the results obtained from linear analysis are provided.
Resumo:
Artificial Intelligence (AI) is gaining ever more ground in every sphere of human life, to the point that it is now even used to pass sentences in courts. The use of AI in the field of Law is however deemed quite controversial, as it could provide more objectivity yet entail an abuse of power as well, given that bias in algorithms behind AI may cause lack of accuracy. As a product of AI, machine translation is being increasingly used in the field of Law too in order to translate laws, judgements, contracts, etc. between different languages and different legal systems. In the legal setting of Company Law, accuracy of the content and suitability of terminology play a crucial role within a translation task, as any addition or omission of content or mistranslation of terms could entail legal consequences for companies. The purpose of the present study is to first assess which neural machine translation system between DeepL and ModernMT produces a more suitable translation from Italian into German of the atto costitutivo of an Italian s.r.l. in terms of accuracy of the content and correctness of terminology, and then to assess which translation proves to be closer to a human reference translation. In order to achieve the above-mentioned aims, two human and automatic evaluations are carried out based on the MQM taxonomy and the BLEU metric. Results of both evaluations show an overall better performance delivered by ModernMT in terms of content accuracy, suitability of terminology, and closeness to a human translation. As emerged from the MQM-based evaluation, its accuracy and terminology errors account for just 8.43% (as opposed to DeepL’s 9.22%), while it obtains an overall BLEU score of 29.14 (against DeepL’s 27.02). The overall performances however show that machines still face barriers in overcoming semantic complexity, tackling polysemy, and choosing domain-specific terminology, which suggests that the discrepancy with human translation may still be remarkable.