3 resultados para Schrodinger PictureFormalism
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Si è proposto una serie di 4 assiomi per la MQ più deboli, e quindi più fondamentali, da cui è possibile dedurre i concetti di misura di probabilità, equazione di Schrodinger e operatori autoaggiunti, considerati i pilastri della MQ. Si è cercato di trovare le motivazioni fisiche che rendevano necessaria la loro formulazione e si sono sviluppate le conseguenze matematiche. In particolare ci si è focalizzati nel dimostrare che non a tutte le osservabili possono essere associati operatori simmetrici definiti su tutto lo spazio di Hilbert, da cui l’introduzione negli assiomi della MQ degli operatori simmetrici massimali densamente definiti; il punto fondamentale è che da questi ultimi è stato provato che si può arrivare alla corrispondenza biunivoca tra operatori autoaggiunti ed osservabili fisiche. Si è infine dimostrato che la condizione che un operatore sia simmetrico massimale non implica che esso sia autoaggiunto.
Resumo:
Lo scopo di questo elaborato è compiere un viaggio virtuale attraverso le tappe principali dello sviluppo della teoria dei quanti e approfondirla nelle sue diverse rappresentazioni, quella di Erwin Schrodinger, quella di Werner Karl Heisenberg e quella di Paul Adrien Maurice Dirac, fino ad arrivare, nella fase conclusiva, a diverse applicazione delle rappresentazioni, sfiorando marginalmente la Teoria dei Campi e, di conseguenza, introducendo un parziale superamento della stessa Teoria Quantistica.
Resumo:
Abstract|IT Nelle lauree triennali le pubblicazioni scientifiche non vengono studiate. Per quanto possa rivelarsi un piccolo intervento, lo scopo di questa tesi è invece quello di rendere più accessibili ai pochi interessati alcune vecchie e polverose pubblicazioni. Inoltre, la presente tesi non dovrebbe essere trattata come un lavoro a se stante, ma come il primo mattone di un progetto che comprende tutte le maggiori pubblicazioni della storia. How to get an equation named after you (Part I) in particolare discute la serie di pubblicazioni del 1926 di Schrödinger "Quantisierung als Eigenwertproblem" e l’articolo del 1928 di Dirac "The Quantum Theory of the Electron", ovvero quei lavori dove le equazioni di Schrödinger e Dirac vennero per prime derivate. La serie di articoli del 1926 sommano ad un totale di oltre 100 pagine. Inizialmente Schrödinger dimostra come ciò su cui è basata la sua teoria possa spiegare correttamente fenomeni conosciuti come l’atomo di idrogeno e l’effetto Stark, per poi derivare la famosa equazione d’onda complessa del secondo ordine. I procedimenti matematici, in questi articoli, sono complicati e molte delle dimostrazioni non vengono mostrate oppure risultano inutilmente lunghe. La pubblicazione di Dirac invece ha principalmente a che fare con la derivazione dell’equazione, la sua generalizzazione e l’invarianza relativistica. Dimostra inoltre che tale equazione è compatibile con passate teorie. La lettura di Dirac è molto più sistematica, dato il largo utilizzo di dimostrazioni matematiche laddove Schrödinger avrebbe usato parole.