1 resultado para Scenario planning
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Aston University Research Archive (10)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (27)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Brock University, Canada (7)
- CentAUR: Central Archive University of Reading - UK (206)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (13)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (36)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (96)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Ecology and Society (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (30)
- Instituto Politécnico do Porto, Portugal (28)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (77)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (17)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (10)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Escola Nacional de Administração Pública (ENAP) (3)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (33)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (20)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (11)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (67)
- Université de Montréal, Canada (15)
- University of Queensland eSpace - Australia (61)
- University of Southampton, United Kingdom (18)
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.