2 resultados para Scanning and Transmission Electron Microscopies
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.
Resumo:
Metal nanoparticle catalysts have in the last decades been extensively researched for their enhanced performance compared to their bulk counterpart. Properties of nanoparticles can be controlled by modifying their size and shape as well as adding a support and stabilizing agent. In this study, preformed colloidal gold nanoparticles supported on activated carbon were tested on the reduction of 4-nitrophenol by NaBH4, a model reaction for evaluating catalytic activity of metal nanoparticles and one with high significance in the remediation of industrial wastewaters. Methods of wastewater remediation are reviewed, with case studies from literature on two major reactions, ozonation and reduction, displaying the synergistic effects observed with bimetallic and trimetallic catalysts, as well as the effects of differences in metal and support. Several methods of preparation of nanoparticles are discussed, in particular, the sol immobilization technique, which was used to prepare the supported nanoparticles in this study. Different characterization techniques used in this study to evaluate the materials and spectroscopic techniques to analyze catalytic activities of the catalyst are reviewed: ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) analysis, X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) imaging. Optimization of catalytic parameters was carried out through modifications in the reaction setup. The effects of the molar ratio of reactants, stirring, type and amount of stabilizing agent are explored. Another important factor of an effective catalyst is its reusability and long-term stability, which was examined with suggestions for further studies. Lastly, a biochar support was newly tested for its potential as a replacement for activated carbon.