2 resultados para Scandinavia - Description and travel
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.
Resumo:
The ability to create hybrid systems that blend different paradigms has now become a requirement for complex AI systems usually made of more than a component. In this way, it is possible to exploit the advantages of each paradigm and exploit the potential of different approaches such as symbolic and non-symbolic approaches. In particular, symbolic approaches are often exploited for their efficiency, effectiveness and ability to manage large amounts of data, while symbolic approaches are exploited to ensure aspects related to explainability, fairness, and trustworthiness in general. The thesis lies in this context, in particular in the design and development of symbolic technologies that can be easily integrated and interoperable with other AI technologies. 2P-Kt is a symbolic ecosystem developed for this purpose, it provides a logic-programming (LP) engine which can be easily extended and customized to deal with specific needs. The aim of this thesis is to extend 2P-Kt to support constraint logic programming (CLP) as one of the main paradigms for solving highly combinatorial problems given a declarative problem description and a general constraint-propagation engine. A real case study concerning school timetabling is described to show a practical usage of the CLP(FD) library implemented. Since CLP represents only a particular scenario for extending LP to domain-specific scenarios, in this thesis we present also a more general framework: Labelled Prolog, extending LP with labelled terms and in particular labelled variables. The designed framework shows how it is possible to frame all variations and extensions of LP under a single language reducing the huge amount of existing languages and libraries and focusing more on how to manage different domain needs using labels which can be associated with every kind of term. Mapping of CLP into Labeled Prolog is also discussed as well as the benefits of the provided approach.