2 resultados para Sandwich Structures

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade it emerged the interest in new types of acoustic insulating materials, called acoustic metamaterials. These materials are composed by a host and inclusions and are arranged periodically or non-periodically in sub-wavelength elements called meta-atoms. Their inclusions and internal geometries can be manipulated to tailor the acoustic properties, reducing weight, and increasing at the same time their efficiency. Thanks to the high absorbing characteristics that they can achieve, their usage is of particularly interest as material of the core in sandwich panels of aerospace structures to reduce vibrations and noise inside passengers aircraft’s cabin. In addition, since the low frequency signals are difficult to be damped with conventional materials, their usage can guarantee a high transmission loss at low frequencies, obtaining a positive benefit on passengers’ comfort. The performances and efficiency of these materials are enhanced thanks to the new additive manufacturing techniques opposed to the conventional ones uncapable to pro- duce such complex internal geometries. The aim of this work is to study, produce and redesign micro-perforated sandwich panels of a literature case study to achieve high performances in the low frequency range, e.g., below 2000 Hz. Some geometrical parameters, such as perforation ratio and diameter of holes, were considered to realize different models and see the differences in the sound transmission loss. The models were produced by means of Fused Deposition Modelling using an Acrylonitrile Butadiene Styrene (ABS Plus p430) material on a commercial additive manufacturing system. Finally, the frequency response analysis was carried out with Mul2 software, based on the Carrera’s Unified Formulation (CUF) to understand the acoustic and structural properties of the material employed, analyzing the plates’ displacements and the TL results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.